146 research outputs found

    An experimental and computational study of calamitic and bimesogenic liquid crystals incorporating an optically active [2,2]-paracyclophane

    Get PDF
    Two liquid-crystalline materials containing an optically active (R)-4-hydroxy-[2,2]-paracyclophane group were prepared, one in which the chiral group is a bulky terminal unit and one in which it forms part of a terphenyl-like mesogenic unit. Both materials exhibit monotropic chiral nematic phases. Partial phase diagrams were constructed for mixtures of both materials with 5CB, allowing us to extrapolate pitch lengths and helical twisting power values (HTP) for each material. The HTP value of the material with a ‘locked’ paracyclophane is 70% higher than that of a ‘free’ paracyclophane and this is rationalised as being due to the reduction in conformational freedom of the former material relative to the later

    Growth and change Florida style: 1970 to 2000

    Get PDF
    Journal ArticleIn response to development patterns leading to what may be termed "urban sprawl," several local, regional, and state governments in the United States have embarked on growth management or urban containment strategies. These strategies typically aim to synchronize key public facilities with urban development pressures, preserve open spaces, and facilitate development in ways that preserve public goods, minimize public costs, and account for development impacts by those who cause them (Nelson and Dawkins, 2002; Nelson and Duncan, 1995). We refer the reader to Nelson and Dawkins (2002) for a review of how growth management and urban containment work and how they vary in application across the United States. One of the cornerstones of urban containment is limiting development beyond an urban containment boundary such as an urban growth boundary, urban service limit, or (in the UK) urban growth stopline (see Easley, 1992). Development is restricted in one of two principal ways. First and foremost in all containment schemes is preventing the extension of urban facilities into the rural countryside, especially wastewater treatment provided via sanitary sewers. This restriction is sometimes but not always extended to public water systems

    Developments in liquid-crystalline dimers and oligomers

    Get PDF
    Liquid-crystalline dimers and bimesogens have attracted much attention due to their propensity to exhibit the spontaneously chiral twist-bend mesophase (NTB), most often by dimers with methylene spacers. Despite their relative ease of synthesis, the number of ether-linked twist-bend materials significantly lags behind those of methylene-linked compounds. In this work, we have prepared and studied a range of ether-linked bimesogens homologous in structure to the FFO9OCB; as with methylene-linked systems, it appears that it is molecular topology and the gross molecular shape that are the primary drivers for the formation of this phase of matter. Dimers and bimesogens are well studied within the context of the twist-bend phase; however, present understanding of this mesophase in oligomeric systems lags far behind. We report our recent efforts to prepare further examples of oligomeric twist-bend nematogens, including further examples of our ‘n+1’ methodology, which may allow the synthesis of high-purity, monodisperse materials of any given length to be prepared. We have observed that there is a tendency for these materials to exhibit highly ordered soft-crystalline mesophases as opposed to the twist-bend phase

    Guest-host systems containing anthraquinone dyes with multiple visible transitions giving positive and negative dichroic order parameters : an assessment of principal molecular axes and computational methods

    Get PDF
    Three 1,4-disubstituted anthraquinone dyes with bis(4-n-butylphenyl) substituents connected via amine or amide linking groups have been studied as guest molecules dissolved in the nematic host E7. UV-visible absorption spectroscopy has shown each of the dyes to exhibit multiple absorption bands in the visible region, and dichroic order parameters obtained from polarised spectra of aligned guest–host samples were shown to differ significantly between the bands for each dye, and between the dyes. Time-dependent density functional theory calculations indicated that each dye exhibits several transitions, giving transition dipole moment vectors with a range of orientations, and fully atomistic molecular dynamics simulations of the guest–host mixtures showed differences in the calculated molecular alignments of the dyes. Combining the results from these two sets of calculations enabled a comparison of molecular alignment models based on the moments of inertia and the surface tensors of the dyes. The match between calculated and experimental values was improved significantly when using the surface tensor rather than the moment of inertia model, indicating that the shapes of the molecular surfaces of these dyes are crucial to their alignment. A novel method of calculating polarised UV-visible absorption spectra of dyes in liquid crystal hosts is also presented

    Conformational landscapes of bimesogenic compounds and their implications for the formation of modulated nematic phases

    Get PDF
    The twist-bend phase (NTB) is most commonly observed in materials with a gross-bent shape: dimers; bent-cores; bent-oligomers. We had suggested previously that the bend-angle of such systems effectively dictates the relative thermal stability of the NTB phase. However, our earlier paper relied on the use of a single energy-minimum conformer and so failed to capture any information about flexibility and conformational distribution. In the present work, we revisit our hypothesis and examine a second set of dimers with varying linking groups and spacer composition. We have improved on our earlier work by studying the conformational landscape of each material, allowing average bend-angles to be determined as well as the conformer distribution. We observe that the stability of the NTB phase exhibits a strong dependence not only on the Boltzmann-weighted average bend-angle (rather than just a static conformer), but also on the distribution of conformers. To a lesser extent, the flexibility of the spacer appears important. Ultimately, this work satisfies both theoretical treatments and our initial experimental study and demonstrates the importance of molecular bend to the NTB phase

    Structural variants of RM734 in the design of splay nematic materials

    Get PDF
    The recent discovery of the splay nematic phase, a new nematic polymorph that has been found to be both polar and ferroelectric, is the lead paragraph in an entirely new chapter in the history of liquid crystals. The potential for transformative applications utilising this state of matter–such as photonics, non-linear optics, memory applications and so on–can only be met with significant improvements in the temperature range of existing materials such as 4-(4-nitrophenoxycarbonyl)phenyl 4-methoxy-2-methoxybenzoate (RM734). Herein we present several families of materials which are structurally related to the archetypal new nematic material, RM734, including the first non-rod-like materials within the context of the splay nematic phase. We find that the incidence (or absence) of this new nematic variant in a designer material cannot be easily rationalised in terms of molecular dipole moment or polarisability. However, mixture formulation shows promise for the engineering of materials with improved working temperature ranges

    Photoswitching of Dihydroazulene Derivatives in Liquid-Crystalline Host Systems

    Get PDF
    Photoswitches and dyes in the liquid-crystalline nematic phase have the potential for use in a wide range of applications. A large order parameter is desirable to maximize the change in properties induced by an external stimulus. A set of photochromic and nonphotochromic dyes were investigated for these applications. It was found that a bent-shaped 7-substituted dihydroazulene (DHA) photoswitch exhibited liquid-crystalline properties. Further investigation demonstrated that this material actually followed two distinct reaction pathways on heating, to a deactivated form by a 1,5-sigmatropic shift and to a linear 6-substituted DHA. In addition, elimination of hydrogen cyanide from the photoactive DHA gave both bent and linear azulene dyes. In a nematic host that has no absorbance around 350 nm, it was found that only the linear DHA derivative has nematic properties; however, both 6- and 7-substituted DHAs were found to have large order parameters. In the nematic host, ring opening of either DHA to the corresponding vinylheptafulvene resulted in a decrease in dichroic order parameter and an unusually fast back-reaction to a mixture of both DHAs. Likewise, only the linear azulene derivative showed mesomorphic properties. In the same nematic host, large order parameters were also observed for these dyes

    Janus mesophases of matter

    Get PDF
    In ancient Roman religion and myth, Janus is the god of beginnings, gates, transitions, time, duality, doorways, passages, frames, and endings. He is usually depicted as having two faces looking in opposite directions, one towards the past and the other towards the future. This article is dedicated to Professor BK Sadashiva for his contributions to the science of liquid crystals, and new beginnings in the design and creation of mesomorphic materials. In the studies of metallomesogens based on copper(II) complexes of β-diketones, Ohta and his colleagues reported the first-established discotic-lamellar phase, in which the board-like complexes are able to form lamellar packing arrangements, and at the same time stacking into columns. Casagrande et al. later prepared synthetically modified beads with one hemisphere being hydrophobic and the other hydrophilic. These particles were considered to be amphiphilic solids, and called Janus Beads. Synthetic Janus Mesogens with supermolecular architectures having one chiral nematic hemisphere and the other with smectic tendencies were made in 2003. These complexes, particles, and supermolecules, were termed Janus to describe the structure of the material. In this article we use Janus liquid crystals to describe a material that combines two different packing motifs in a single uniform phase structure

    Condensation of free volume in structures of nematic and hexatic liquid crystals

    Get PDF
    Eight novel liquid crystalline materials were prepared containing highly branched terminal chains, either 2,4,4-trimethylpentyl or 3,5,5-trimethylhexyl. All materials exhibit nematic mesophases, with additional smectic (Sm) C, hexatic B and SmI phases for certain homologues. Analysis by small- and wide-angle X-ray scattering reveals continual build-up of the correlation length within the nematic phases, where we also observe splitting of the small angle peak into four lobes, indicating pretransitional Sm fluctuations. Connoscopy confirms the nematic phase to be uniaxial and optically positive. We observe that in the solid state, the molecules exist as staggered antiparallel pairs as a consequence of the sterically demanding bulky terminal group, and this would also appear to manifest in the hexatic B phase, where the layer spacing was found to be greater than the molecular length. If true, this is an example of pair formation driven by sterics rather than dipole–dipole interactions and suggests that reentrant systems driven purely by steric frustration may be found

    Engineering mesophase stability and structure via incorporation of cyclic terminal groups

    Get PDF
    We report on the characterisation of a number of liquid-crystalline materials featuring cyclic terminal groups, which lead to significant enhancements in the temperature range of the mesomorphic state. Materials with only short terminal chains are able to support lamellar mesophase formation by appending a large terminal cyclic unit at the end of a short spacer composed of methylene units. X-ray scattering experiments reveal that the layer spacings of the lamellar smectic phase are significantly larger when a cyclic end-group is present than for equivalent linear unsubstituted materials, but there is no effect on orientational order. Fully atomistic molecular dynamics simulations faithfully reproduce experimental layer spacings and orientational order parameters, and indicate that the cyclic terminal units spontaneously segregate into diffuse sub-layers and thus cause the increased layer spacing. This shape segregation predicted by molecular dynamics simulations is observed in the crystalline solid state by X-ray diffraction
    • …
    corecore