462 research outputs found

    Rapid responses

    Get PDF

    A feasibility study comparing UK older adult mental health inpatient wards which use protected engagement time with other wards which do not: Study protocol

    Get PDF
    © 2016 Nolan et al. Background: Protected engagement time (PET) is a concept of managing staff time on mental health inpatient wards with the aim of increasing staff and patient interaction. Despite apparent widespread use of PET, there remains a dearth of evidence as to how it is implemented and whether it carries benefits for staff or patients. This protocol describes a study which is being carried out on mental health wards caring for older adults (aged over 65) in England. The study shares a large proportion of the procedures, measures and study team membership of a recently completed investigation of the impact of PET in adult acute mental health wards. The study aims to identify prevalence and components of PET to construct a model for the intervention, in addition to testing the feasibility of the measures and procedures in preparation for a randomised trial. Methods/design: The study comprises four modules and uses a mixed methods approach. Module 1 involves mapping all inpatient wards in England which provide care for older adults, including those with dementia, ascertaining how many of these provide PET and in what way. Module 2 uses a prospective cohort method to compare five older adult mental health wards that use PET with five that do not across three National Health Service (NHS) Foundation Trust sites. The comparison comprises questionnaires, observation tools and routinely collected clinical service data and combines validated measures with questions developed specifically for the study. Module 3 entails an in-depth case study evaluation of three of the participating PET wards (one from each NHS Trust site) using semi-structured interviews with patients, carers and staff. Module 4 describes the development of a model and fidelity scale for PET using the information derived from the other modules with a working group of patients, carers and staff. Discussion: This is a feasibility study to test the application of the measures and methods in inpatient wards for older adults and develop a draft model for the intervention. The next stage will prospectively involve testing of the model and fidelity scale in randomised conditions to provide evidence for the effectiveness of PET as an intervention

    Presenting patient data in the electronic care record: the role of timelines

    Get PDF
    OBJECTIVE: To establish the current level of awareness and investigate the use of timelines within clinical computing systems as an organized display of the electronic patient record (EPR). DESIGN: Multicentre survey conducted using questionnaires and interview. SETTING: Seven UK hospitals and several general practice surgeries. PARTICIPANTS: A total of 120 healthcare professionals completed a questionnaire which directed structured interviews. Participants fell into two cohorts according to whether or not they had used clinical timelines, which gave 60 timeline users and 60 prospective timeline users. MAIN OUTCOME MEASURES: To investigate the awareness of timelines, and the potential benefits of timelines within clinical computing systems. RESULTS: Fifty-eight percent of participants had not heard of the specific term timelines despite 75% of users utilizing a form of timeline on a daily basis. The potential benefits of future timelines were clinical audit (95%CI 77.6-91.6), increased time efficiency (95%CI 77.7-91.6%), reduced clinical error (95%CI 71.0-86.7) and improved patient safety (95%CI 70.0-85.9). One continuous timeline view between primary and secondary care was considered to be of great potential benefit in allowing communication via a unified patient record. CONCLUSIONS: The concept of timelines has enjoyed proven success in healthcare in the USA and in other sectors worldwide. Clinicians are supportive of timelines in healthcare. Formal input from clinicians should be sought when designing and implementing computer systems in healthcare. Timelines in healthcare support clinicians cognitive processes by improving the amount of data available and improving the way in which data are presented

    An Algorithmic Approach to Missing Data Problem in Modeling Human Aspects in Software Development

    Get PDF
    Background: In our previous research, we built defect prediction models by using confirmation bias metrics. Due to confirmation bias developers tend to perform unit tests to make their programs run rather than breaking their code. This, in turn, leads to an increase in defect density. The performance of prediction model that is built using confirmation bias was as good as the models that were built with static code or churn metrics. Aims: Collection of confirmation bias metrics may result in partially "missing data" due to developers' tight schedules, evaluation apprehension and lack of motivation as well as staff turnover. In this paper, we employ Expectation-Maximization (EM) algorithm to impute missing confirmation bias data. Method: We used four datasets from two large-scale companies. For each dataset, we generated all possible missing data configurations and then employed Roweis' EM algorithm to impute missing data. We built defect prediction models using the imputed data. We compared the performances of our proposed models with the ones that used complete data. Results: In all datasets, when missing data percentage is less than or equal to 50% on average, our proposed model that used imputed data yielded performance results that are comparable with the performance results of the models that used complete data. Conclusions: We may encounter the "missing data" problem in building defect prediction models. Our results in this study showed that instead of discarding missing or noisy data, in our case confirmation bias metrics, we can use effective techniques such as EM based imputation to overcome this problem

    Evaluating the effectiveness of a radiation safety training intervention for oncology nurses: a pretest – intervention – posttest study

    Get PDF
    BACKGROUND: Radiation, for either diagnosis or treatment, is used extensively in the field of oncology. An understanding of oncology radiation safety principles and how to apply them in practice is critical for nursing practice. Misconceptions about radiation are common, resulting in undue fears and concerns that may negatively impact patient care. Effectively educating nurses to help overcome these misconceptions is a challenge. Historically, radiation safety training programs for oncology nurses have been compliance-based and behavioral in philosophy. METHODS: A new radiation safety training initiative was developed for Memorial Sloan-Kettering Cancer Center (MSKCC) adapting elements of current adult education theories to address common misconceptions and to enhance knowledge. A research design for evaluating the revised training program was also developed to assess whether the revised training program resulted in a measurable and/or statistically significant change in the knowledge or attitudes of nurses toward working with radiation. An evaluation research design based on a conceptual framework for measuring knowledge and attitude was developed and implemented using a pretest-intervention-posttest approach for 15% of the study population of 750 inpatient registered oncology nurses. RESULTS: As a result of the intervention program, there was a significant difference in nurse's cognitive knowledge as measured with the test instrument from pretest (58.9%) to posttest (71.6%). The evaluation also demonstrated that while positive nursing attitudes increased, the increase was significant for only 5 out of 9 of the areas evaluated. CONCLUSION: The training intervention was effective for increasing cognitive knowledge, but was less effective at improving overall attitudes. This evaluation provided insights into the effectiveness of training interventions on the radiation safety knowledge and attitude of oncology nurses

    A four phase development model for integrated care services in the Netherlands

    Get PDF
    Background. Multidisciplinary and interorganizational arrangements for the delivery of coherent integrated care are being developed in a large number of countries. Although there are many integrated care programs worldwide, the process of developing these programs and interorganizational collaboration is described in the literature only to a limited extent. The purpose of this study is to explore how local integrated care services are developed in the Netherlands, and to conceptualize and operationalize a development model of integrated care. Methods. The research is based on an expert panel study followed by a two-part questionnaire, designed to identify the development process of integrated care. Essential elements of integrated care, which were developed in a previous Delphi and Concept Mapping Study, were analyzed in relation to development process of integrated care. Results. Integrated care development can be characterized by four developmental phases: the initiative and design phase; the experimental and execution phase; the expansion and monitoring phase; and the consolidation and transformation phase. Different elements of integrated care have been identified in the various developmental phases. Conclusion. The findings provide a descriptive model of the development process that integrated care services can undergo in the Netherlands. The findings have important implications for integrated care services, which can use the model as an instrument to reflect on their current practices. The model can be used to help to identify improvement areas in practice. The model provides a framework for developing evaluation designs for integrated care arrangements. Further research is recommended to test the developed model in practice and to add international experiences
    corecore