268 research outputs found

    Spontaneous emission from a two-level atom in anisotropic one-band photonic crystals: a fractional calculus approach

    Full text link
    Spontaneous emission (SE) from a two-level atom in a photonic crystal (PC) with anisotropic one-band model is investigated using the fractional calculus. Analytically solving the kinetic equation in terms of the fractional exponential function, the dynamical discrepancy of SE between the anisotropic and isotropic systems is discussed on the basis of different photon density of states (DOS) and the existence of incoherent diffusion field that becomes even more clearly as the atomic transition frequency lies close to the band edge. With the same atom-field coupling strength and detuning in the forbidden gap, the photon-atom bound states in the isotropic system turn into the unbound ones in the anisotropic system that is consistent with the experimental observation in Phys.Phys. Rev.Rev. Lett.Lett. \textbf{96}, 243902 (2006). Dynamics along different wavevectors with various curvatures of dispersion is also addressed with the changes of the photon DOS and the appearance of the diffusion fields.Comment: 16 pages, 4 figure

    Polymorphisms of the SIPA1 gene and sporadic breast cancer susceptibility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The novel breast cancer metastasis modulator gene signal-induced proliferation-associated 1 (<it>Sipa1</it>) underlies the breast cancer metastasis efficiency modifier locus Mtes 1 and has been shown to influence mammary tumour metastatic efficiency in the mouse, with an ectopically expressing <it>Sipa1 </it>cell line developing 1.5 to 2 fold more surface pulmonary metastases. <it>Sipa1 </it>encodes a mitogen-inducible GTPase activating (GAP) protein for members of the Ras-related proteins; participates in cell adhesion and modulates mitogen-induced cell cycle progression. Germline <it>SIPA1 </it>SNPs showed association with positive lymph node metastasis and hormonal receptor status in a Caucasian cohort. We hypothesized that <it>SIPA1 </it>may also be correlated to breast carcinoma incidence as well as prognosis. Therefore, this study investigated the potential relationship of <it>SIPA1 </it>and human breast cancer incidence by a germline SNP genotype frequency association study in a case-control Caucasian cohort in Queensland, Australia.</p> <p>Methods</p> <p>The SNPs genotyped in this study were identified in a previous study and the genotyping assays were carried out using TaqMan SNP Genotyping Assays. The data were analysed with chi-square method and the Monte Carlo style CLUMP analysis program.</p> <p>Results</p> <p>Results indicated significance with <it>SIPA1 </it>SNP rs3741378; the CC genotype was more frequently observed in the breast cancer group compared to the disease-free control group, indicating the variant C allele was associated with increased breast cancer incidence.</p> <p>Conclusion</p> <p>This observation indicates SNP rs3741378 as a novel potential sporadic breast cancer predisposition SNP. While it showed association with hormonal receptor status in breast cancer group in a previous pilot study, this exonic missense SNP (Ser (S) to Phe (F)) changes a hydrophilic residue (S) to a hydrophobic residue (F) and may significantly alter the protein functions of <it>SIPA1 </it>in breast tumourgenesis. <it>SIPA1 </it>SNPs rs931127 (5' near gene), and rs746429 (synonymous (Ala (A) to Ala (A)), did not show significant associations with breast cancer incidence, yet were associated with lymph node metastasis in the previous study. This suggests that <it>SIPA1 </it>may be involved in different stages of breast carcinogenesis and since this study replicates a previous study of the associated SNP, it implicates variants of the <it>SIPA1 </it>gene as playing a potential role in breast cancer.</p

    Ultrathin compound semiconductor on insulator layers for high performance nanoscale transistors

    Full text link
    Over the past several years, the inherent scaling limitations of electron devices have fueled the exploration of high carrier mobility semiconductors as a Si replacement to further enhance the device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been actively studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. This integration, however, presents significant challenges. Conventionally, heteroepitaxial growth of complex multilayers on Si has been explored. Besides complexity, high defect densities and junction leakage currents present limitations in the approach. Motivated by this challenge, here we utilize an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on Si/SiO2 substrates. As a parallel to silicon-on-insulator (SOI) technology14,we use the abbreviation "XOI" to represent our compound semiconductor-on-insulator platform. Through experiments and simulation, the electrical properties of InAs XOI transistors are explored, elucidating the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Importantly, a high quality InAs/dielectric interface is obtained by the use of a novel thermally grown interfacial InAsOx layer (~1 nm thick). The fabricated FETs exhibit an impressive peak transconductance of ~1.6 mS/{\mu}m at VDS=0.5V with ON/OFF current ratio of greater than 10,000 and a subthreshold swing of 107-150 mV/decade for a channel length of ~0.5 {\mu}m

    Intestinal Paneth cell differentiation relies on asymmetric regulation of Wnt signaling by Daam1/2

    Get PDF
    The mammalian intestine is one of the most rapidly self-renewing tissues, driven by stem cells residing at the crypt bottom. Paneth cells form a major element of the niche microenvironment providing various growth factors to orchestrate intestinal stem cell homeostasis, such as Wnt3. Different Wnt ligands can selectively activate β-catenin-dependent (canonical) or -independent (noncanonical) signaling. Here, we report that the Dishevelled-associated activator of morphogenesis 1 (Daam1) and its paralogue Daam2 asymmetrically regulate canonical and noncanonical Wnt (Wnt/PCP) signaling. Daam1/2 interacts with the Wnt inhibitor RNF43, and Daam1/2 double knockout stimulates canonical Wnt signaling by preventing RNF43-dependent degradation of the Wnt receptor, Frizzled (Fzd). Single-cell RNA sequencing analysis revealed that Paneth cell differentiation is impaired by Daam1/2 depletion because of defective Wnt/PCP signaling. Together, we identified Daam1/2 as an unexpected hub molecule coordinating both canonical and noncanonical Wnt, which is fundamental for specifying an adequate number of Paneth cells

    Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure

    Get PDF
    The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum

    Can Public Health Interventions Change Immediate and Long-Term Dietary Behaviours? Encouraging Evidence from a Pilot Study of the U.K. Change4Life Sugar Swaps Campaign

    Get PDF
    The aim of this pilot study was to evaluate the effectiveness of the U.K. Change4Life Sugar Swaps campaign for improving nutritional intake in a small sample of families prior to the 2015 nationwide launch. A total of 49 participants from 14 families received information and materials during a two-week intervention period in November 2014 encouraging them to swap high sugar foods and drinks for low sugar alternatives. Daily dietary intake was reported with online food diaries over four stages, each two weeks in length: (i) baseline (no information provided), (ii) intervention when Sugar Swaps materials were accessible, (iii) immediate follow-up, and (iv) one year on from baseline. Data were analysed for sugar, glucose, fructose, sucrose, lactose, fat, saturated fat, carbohydrate, protein, salt, fibre, vitamin C, and energy. During the intervention, significant daily reductions of 32 g sugar, 11 g fat, and 236 kcal for each family member were observed, among others, and 61% of benefits achieved during the intervention period were maintained at immediate follow-up. Encouragingly, for children, reductions in sugar, sucrose, fat, saturated fat, carbohydrate, and energy were observed one year on. The Sugar Swaps Campaign is potentially an effective public health intervention for improving short- and long-term dietary behaviour for the whole family

    Changes in health risk behaviors of elementary school students in northern Taiwan from 2001 to 2003: results from the child and adolescent behaviors in long-term evolution study

    Get PDF
    [[abstract]]Background: Previous research has indicated that children's behaviors have long-term effects on later life. Hence it is important to monitor the development of health risk behaviors in childhood. This study examined the changes in health risk behaviors in fourth- to sixth-grade students in northern Taiwan from 2001 to 2003. Methods: The Child and Adolescent Behaviors in Long-Term Evolution (CABLE) study collected data from 1,820 students from 2001 to 2003 (students were 9 or 10 years old in 2001). Exploratory factor analysis was used to determine the aggregation of health risk behaviors. A linear growth curve model was used to determine whether health risk behaviors changed over time. Results: Of the 13 behaviors, staying up late and eating snacks late at night were the most prevalent (82.3% of subjects in 2001, 81.8% in 2002, 88.5% in 2003) and second most prevalent (68.7%, 67.4%, 71.6%) behaviors, respectively, from 2001 to 2003. The three least prevalent health risk behaviors were chewing betel nut (1.0%, 0.4%, 0.2%), smoking (1.4%, 1.0%, 0.8%), and drinking alcohol (8.5%, 6.0%, 5.2%). The frequencies of swearing and staying up late showed the greatest significant increases with time. On the other hand, suppressing urination and drinking alcohol decreased over time. Using exploratory factor analysis, we aggregated the health risk behaviors into three categories: unhealthy habits, aggressive behaviors, and substance use. Although students did not display high levels of aggressive behavior or experimentation with substances, the development of these behaviors in a small proportion of students should not be ignored. The results of the linear growth curve model indicated that unhealthy habits and aggressive behaviors increased over time. However, substance use slightly decreased over time. Conclusion: We found that some health risk behaviors increased with time while others did not. Unhealthy habits and aggressive behaviors increased, whereas substance use slightly decreased during this period. Educational professionals should pay attention to the different patterns of change in these behaviors in elementary school students

    Differentially Expressed RNA from Public Microarray Data Identifies Serum Protein Biomarkers for Cross-Organ Transplant Rejection and Other Conditions

    Get PDF
    Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering more than 30% of United States mortality. We hypothesized that genes coding for serum- and urine-detectable proteins, and showing differential expression of RNA in disease-damaged tissues would make ideal diagnostic protein biomarkers for those diseases. We showed that predicted protein biomarkers are significantly enriched for known diagnostic protein biomarkers in 22 diseases, with enrichment significantly higher in diseases for which at least three datasets are available. We then used this strategy to search for new biomarkers indicating acute rejection (AR) across different types of transplanted solid organs. We integrated three biopsy-based microarray studies of AR from pediatric renal, adult renal and adult cardiac transplantation and identified 45 genes upregulated in all three. From this set, we chose 10 proteins for serum ELISA assays in 39 renal transplant patients, and discovered three that were significantly higher in AR. Interestingly, all three proteins were also significantly higher during AR in the 63 cardiac transplant recipients studied. Our best marker, serum PECAM1, identified renal AR with 89% sensitivity and 75% specificity, and also showed increased expression in AR by immunohistochemistry in renal, hepatic and cardiac transplant biopsies. Our results demonstrate that integrating gene expression microarray measurements from disease samples and even publicly-available data sets can be a powerful, fast, and cost-effective strategy for the discovery of new diagnostic serum protein biomarkers
    corecore