5,162 research outputs found

    Generation of density inhomogeneities by magnetohydrodynamic waves in two dimensions

    Full text link
    Using two dimensional simulations, we study the formation of structures with a high-density contrast by magnetohydrodynamic waves in regions in which the ratio of thermal to magnetic pressure is small. The initial state is a uniform background perturbed by fast-mode wave. Our most significant result is that dense structures persist for far longer in a two-dimensional simulation than in the one-dimensional case. Once formed, these structures persist as long as the fast-mode amplitude remains high.Comment: 6 pages, 7 figures, accepted by MNRA

    A search for neutrino-antineutrino mass inequality by means of sterile neutrino oscillometry

    Full text link
    The investigation of the oscillation pattern induced by the sterile neutrinos might determine the oscillation parameters, and at the same time, allow to probe CPT symmetry in the leptonic sector through neutrino-antineutrino mass inequality. We propose to use a large scintillation detector like JUNO or LENA to detect electron neutrinos and electron antineutrinos from MCi electron capture or beta decay sources. Our calculations indicate that such an experiment is realistic and could be performed in parallel to the current research plans for JUNO and RENO. Requiring at least 5σ\sigma confidence level and assuming the values of the oscillation parameters indicated by the current global fit, we would be able to detect neutrino-antineutrino mass inequality of the order of 0.5% or larger, which would imply a signal of CPT anomalies.Comment: 14 pages, 10 figure

    Shock-triggered formation of magnetically-dominated clouds

    Full text link
    To understand the formation of a magnetically dominated molecular cloud out of an atomic cloud, we follow the dynamical evolution of the cloud with a time-dependent axisymmetric magnetohydrodynamic code. A thermally stable warm atomic cloud is initially in static equilibrium with the surrounding hot ionised gas. A shock propagating through the hot medium interacts with the cloud. As a fast-mode shock propagates through the cloud, the gas behind it becomes thermally unstable. The β\beta value of the gas also becomes much smaller than the initial value of order unity. These conditions are ideal for magnetohydrodynamic waves to produce high-density clumps embedded in a rarefied warm medium. A slow-mode shock follows the fast-mode shock. Behind this shock a dense shell forms, which subsequently fragments. This is a primary region for the formation of massive stars. Our simulations show that only weak and moderate-strength shocks can form cold clouds which have properties typical of giant molecular clouds.Comment: 7 pages, 6 figures, accepted by Astronomy and Astrophysic

    Preparation of Subradiant States using Local Qubit Control in Circuit QED

    Full text link
    Transitions between quantum states by photon absorption or emission are intimately related to symmetries of the system which lead to selection rules and the formation of dark states. In a circuit quantum electrodynamics setup, in which two resonant superconducting qubits are coupled through an on-chip cavity and driven via the common cavity field, one single-excitation state remains dark. Here, we demonstrate that this dark state can be excited using local phase control of individual qubit drives to change the symmetry of the driving field. We observe that the dark state decay via spontaneous emission into the cavity is suppressed, a characteristic signature of subradiance. This local control technique could be used to prepare and study highly correlated quantum states of cavity-coupled qubits.Comment: 5 pages, 4 figure

    Anthrax lethal toxin induced lysosomal membrane permeabilization and cytosolic cathepsin release is Nlrp1b/Nalp1b-dependent.

    Get PDF
    NOD-like receptors (NLRs) are a group of cytoplasmic molecules that recognize microbial invasion or 'danger signals'. Activation of NLRs can induce rapid caspase-1 dependent cell death termed pyroptosis, or a caspase-1 independent cell death termed pyronecrosis. Bacillus anthracis lethal toxin (LT), is recognized by a subset of alleles of the NLR protein Nlrp1b, resulting in pyroptotic cell death of macrophages and dendritic cells. Here we show that LT induces lysosomal membrane permeabilization (LMP). The presentation of LMP requires expression of an LT-responsive allele of Nlrp1b, and is blocked by proteasome inhibitors and heat shock, both of which prevent LT-mediated pyroptosis. Further the lysosomal protease cathepsin B is released into the cell cytosol and cathepsin inhibitors block LT-mediated cell death. These data reveal a role for lysosomal membrane permeabilization in the cellular response to bacterial pathogens and demonstrate a shared requirement for cytosolic relocalization of cathepsins in pyroptosis and pyronecrosis
    • …
    corecore