94 research outputs found

    Functional Genomics Complements Quantitative Genetics in Identifying Disease-Gene Associations

    Get PDF
    An ultimate goal of genetic research is to understand the connection between genotype and phenotype in order to improve the diagnosis and treatment of diseases. The quantitative genetics field has developed a suite of statistical methods to associate genetic loci with diseases and phenotypes, including quantitative trait loci (QTL) linkage mapping and genome-wide association studies (GWAS). However, each of these approaches have technical and biological shortcomings. For example, the amount of heritable variation explained by GWAS is often surprisingly small and the resolution of many QTL linkage mapping studies is poor. The predictive power and interpretation of QTL and GWAS results are consequently limited. In this study, we propose a complementary approach to quantitative genetics by interrogating the vast amount of high-throughput genomic data in model organisms to functionally associate genes with phenotypes and diseases. Our algorithm combines the genome-wide functional relationship network for the laboratory mouse and a state-of-the-art machine learning method. We demonstrate the superior accuracy of this algorithm through predicting genes associated with each of 1157 diverse phenotype ontology terms. Comparison between our prediction results and a meta-analysis of quantitative genetic studies reveals both overlapping candidates and distinct, accurate predictions uniquely identified by our approach. Focusing on bone mineral density (BMD), a phenotype related to osteoporotic fracture, we experimentally validated two of our novel predictions (not observed in any previous GWAS/QTL studies) and found significant bone density defects for both Timp2 and Abcg8 deficient mice. Our results suggest that the integration of functional genomics data into networks, which itself is informative of protein function and interactions, can successfully be utilized as a complementary approach to quantitative genetics to predict disease risks. All supplementary material is available at http://cbfg.jax.org/phenotype

    A Gene-Phenotype Network for the Laboratory Mouse and Its Implications for Systematic Phenotyping

    Get PDF
    The laboratory mouse is the pre-eminent model organism for the dissection of human disease pathways. With the advent of a comprehensive panel of gene knockouts, projects to characterise the phenotypes of all knockout lines are being initiated. The range of genotype-phenotype associations can be represented using the Mammalian Phenotype ontology. Using publicly available data annotated with this ontology we have constructed gene and phenotype networks representing these associations. These networks show a scale-free, hierarchical and modular character and community structure. They also exhibit enrichment for gene coexpression, protein-protein interactions and Gene Ontology annotation similarity. Close association between gene communities and some high-level ontology terms suggests that systematic phenotyping can provide a direct insight into underlying pathways. However some phenotypes are distributed more diffusely across gene networks, likely reflecting the pleiotropic roles of many genes. Phenotype communities show a many-to-many relationship to human disease communities, but stronger overlap at more granular levels of description. This may suggest that systematic phenotyping projects should aim for high granularity annotations to maximise their relevance to human disease

    Crk and CrkL adaptor proteins: networks for physiological and pathological signaling

    Get PDF
    The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses

    Thermal behaviour of sewage sludge in pyrolysis process

    No full text

    Anchored coreness: efficient reinforcement of social networks

    Full text link
    The stability of a social network has been widely studied as an important indicator for both the network holders and the participants. Existing works on reinforcing networks focus on a local view, e.g., the anchored k-core problem aims to enlarge the size of the k-core with a fixed input k. Nevertheless, it is more promising to reinforce a social network in a global manner: considering the engagement of every user (vertex) in the network. Since the coreness of a user has been validated as the “best practice” for capturing user engagement, we propose and study the anchored coreness problem in this paper: anchoring a small number of vertices to maximize the coreness gain (the total increment of coreness) of all the vertices in the network. We prove the problem is NP-hard and show it is more challenging than the existing local-view problems. An efficient greedy algorithm is proposed with novel techniques on pruning search space and reusing the intermediate results. The algorithm is also extended to distributed environment with a novel graph partition strategy to ensure the computing independency of each machine. Extensive experiments on real-life data demonstrate that our model is effective for reinforcing social networks and our algorithms are efficient

    Global Reinforcement of Social Networks: The Anchored Coreness Problem

    Full text link
    © 2020 Association for Computing Machinery. The stability of a social network has been widely studied as an important indicator for both the network holders and the participants. Existing works on reinforcing networks focus on a local view, e.g., the anchored k-core problem aims to enlarge the size of the k-core with a fixed input k. Nevertheless, it is more promising to reinforce a social network in a global manner: considering the engagement of every user (vertex) in the network. Since the coreness of a user has been validated as the "best practice" for capturing user engagement, we propose and study the anchored coreness problem in this paper: anchoring a small number of vertices to maximize the coreness gain (the total increment of coreness) of all the vertices in the network. We prove the problem is NP-hard and show it is more challenging than the existing local-view problems. An efficient heuristic algorithm is proposed with novel techniques on pruning search space and reusing the intermediate results. Extensive experiments on real-life data demonstrate that our model is effective for reinforcing social networks and our algorithm is efficient

    Capecitabine maintenance therapy in patients with recurrent or metastatic breast cancer

    Get PDF
    Our objective was to investigate the efficacy and safety of capecitabine maintenance therapy (CMT) after capecitabine-based combination chemotherapy in patients with metastatic breast cancer. The clinical data of 139 metastatic breast cancer patients treated from March 2008 to May 2012 with capecitabine-based combination chemotherapy were retrospectively analyzed. When initial disease control was achieved by the combination chemotherapy, we used CMT for 50 patients, while 37 patients were treated with a different (non-CMT) maintenance therapy. We compared time to progression (TTP), objective response rate, disease control rate, clinical benefit rate, and safety of the two groups, and a sub-group analysis was performed according to pathological characteristics. Sixty-four percent of the patients received a median of six cycles of a docetaxel+capecitabine combination chemotherapy regimen (range 1-45); the median TTP (MTTP) for the complete treatment was 9.43 months (95%CI=8.38-10.48 months) for the CMT group and 4.5 months (95%CI=4.22-4.78 months; P=0.004) for the non-CMT group. The MTTPs for the maintenance therapies administered after the initial capecitabine combined chemotherapy were 4.11 months (95%CI=3.34-4.87 months) for the CMT group and 2.0 months (95%CI=1.63-2.38 months) for the non-CMT group. Gastrointestinal side effects, decreased white blood cells and palmar-plantar erythrodysesthesia were the main adverse reactions experienced with the combination chemotherapies, CMT and non-CMT treatments. No significant differences in the incidence of adverse reactions were detected in the CMT and non-CMT patients. After initial disease control was achieved with the capecitabine-based combination chemotherapy, CMT can significantly prolong TTP rates with a favorable safety profile
    • …
    corecore