148,972 research outputs found
Recommended from our members
Assessing the effects of technological progress on energy efficiency in the construction industry: A case of China
Energy-saving technologies in buildings have received great attention from energy efficiency researchers in the construction sector. Traditional research tends to focus on the energy used during building operation and in construction materials production, but it usually neglects the energy consumed in the building construction process. Very few studies have explored the impacts of technological progress on energy efficiency in the construction industry. This paper presents a model of the building construction process based on Cobb-Douglas production function. The model estimates the effects of technological progress on energy efficiency with the objective to examine the role that technological progress plays in energy savings in China's construction industry. The modeling results indicated that technological progress improved energy efficiency by an average of 7.1% per year from 1997 to 2014. Furthermore, three main technological progress factors (the efficiency of machinery and equipment, the proportion change of the energy structure, and research and development investment) were selected to analyze their effects on energy efficiency improvement. These positive effects were verified, and results show the effects of first two factors are significant. Finally, recommendations for promoting energy efficiency in the construction industry are proposed
Octupole degree of freedom for the critical-point candidate nucleus Sm in a reflection-asymmetric relativistic mean-field approach
The potential energy surfaces of even-even Sm are investigated in
the constrained reflection-asymmetric relativistic mean-field approach with
parameter set PK1. It is shown that the critical-point candidate nucleus
Sm marks the shape/phase transition not only from U(5) to SU(3)
symmetry, but also from the octupole-deformed ground state in Sm to the
quadrupole-deformed ground state in Sm. By including the octupole
degree of freedom, an energy gap near the Fermi surface for single-particle
levels in Sm with is found, and the
important role of the octupole deformation driving pair and is demonstrated.Comment: 11 pages, 3 figure
Probing the density dependence of the symmetry potential with peripheral heavy-ion collisions
The peripheral heavy-ion collisions of at are studied by means of the Improved Quantum Molecular Dynamics
Model(ImQMD). It is shown that the slope of the average N/Z ratio of emitted
nucleons vs impact parameters for these reactions is very sensitive to the
density dependence of the symmetry energy. Our study also shows that the yields
of and decrease with impact parameters and slope of the yield
of vs impact parameters as well as the ratio of Y()/Y()
depend on the symmetry potential strongly for peripheral heavy-ion collisions.Comment: 10 pages,6 figures, accepted by Phys.Rev.
Robust optimization for energy transactions in multi-microgrids under uncertainty
Independent operation of single microgrids (MGs) faces problems such as low self-consumption of local renewable energy, high operation cost and frequent power exchange with the grid. Interconnecting multiple MGs as a multi-microgrid (MMG) is an effective way to improve operational and economic performance. However, ensuring the optimal collaborative operation of a MMG is a challenging problem, especially under disturbances of intermittent renewable energy. In this paper, the economic and collaborative operation of MMGs is formulated as a unit commitment problem to describe the discrete characteristics of energy transaction combinations among MGs. A two-stage adaptive robust optimization based collaborative operation approach for a residential MMG is constructed to derive the scheduling scheme which minimizes the MMG operating cost under the worst realization of uncertain PV output. Transformed by its KKT optimality conditions, the reformulated model is efficiently solved by a column-and-constraint generation (C&CG) method. Case studies verify the effectiveness of the proposed model and evaluate the benefits of energy transactions in MMGs. The results show that the developed MMG operation approach is able to minimize the daily MMG operating cost while mitigating the disturbances of uncertainty in renewable energy sources. Compared to the non-interactive model, the proposed model can not only reduce the MMG operating cost but also mitigate the frequent energy interaction between the MMG and the grid
Evaluation of the EMC environment generated by a static var compensator
Describes an evaluation of the EMC environment generated by a static var compensator
- …