784 research outputs found

    A zero-cost, real-time, Windows signal laboratory

    Get PDF
    This paper introduces a Windows-based signal capture, display, and waveform synthesis package called “Win-eLab”. The software is able to run on a conventional desktop or laptop with no additional hardware, and can perform real-time Fourier analysis on audio-frequency signals. This paper is intended as an introduction to Win-eLab, aimed at motivating further use of it in both teaching and self-directed learning contexts. The use of the software to familiarize students with the concept of “laboratory” instrumentation is discussed, as well as the usefulness of a simultaneous time-domain/frequency-domain display for understanding signals, particularly in signal processing and communications systems courses. It is anticipated that applications may extend beyond electrical & electronic engineering – for example, as an aid to understanding mechanical vibrations, acoustics, and in other discipline areas

    Throughput and fairness of multiple TCP connections in wireless networks

    Get PDF
    TCP suffers from poor throughput performance in wireless networks. Furthermore, when multiple TCP connections compete at the base station, link errors and congestion lead to serious unfairness among the connections. Although the issue of TCP performance in wireless networks has attracted significant attention, most reports focus only on TCP throughput and assume that there is only a single connection in a congestion-free network. This paper studies the throughput and fairness of popular improvement mechanisms (the Snoop [8] and ELN [5]) and TCP variants with multiple TCP connections. Simulation results show that the improvement mechanisms under investigation are effective to improve TCP throughput in a wireless network. However, they cannot provide fairness among multiple TCP connections. From the studies presented, it is concluded that mechanisms to enhance TCP fairness are needed in wireless network

    Nonlinear fracture mechanics-based analysis of thin wall cylinders

    Get PDF
    This paper presents a simple analysis technique to predict the crack initiation, growth, and rupture of large-radius, R, to thickness, t, ratio (thin wall) cylinders. The method is formulated to deal both with stable tearing as well as fatigue mechanisms in applications to both surface and through-wall axial cracks, including interacting surface cracks. The method can also account for time-dependent effects. Validation of the model is provided by comparisons of predictions to more than forty full scale experiments of thin wall cylinders pressurized to failure

    Analysis of acute brain slices by electron microscopy: A correlative light-electron microscopy workflow based on Tokuyasu cryo-sectioning.

    Get PDF
    Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of antigenicity. Finally, an important feature of this approach is that the fluorescence of the GFP signal is preserved throughout the entire preparation process until the last step before electron microscopy

    Inverse problem for wave equation with sources and observations on disjoint sets

    Full text link
    We consider an inverse problem for a hyperbolic partial differential equation on a compact Riemannian manifold. Assuming that Γ1\Gamma_1 and Γ2\Gamma_2 are two disjoint open subsets of the boundary of the manifold we define the restricted Dirichlet-to-Neumann operator ΛΓ1,Γ2\Lambda_{\Gamma_1,\Gamma_2}. This operator corresponds the boundary measurements when we have smooth sources supported on Γ1\Gamma_1 and the fields produced by these sources are observed on Γ2\Gamma_2. We show that when Γ1\Gamma_1 and Γ2\Gamma_2 are disjoint but their closures intersect at least at one point, then the restricted Dirichlet-to-Neumann operator ΛΓ1,Γ2\Lambda_{\Gamma_1,\Gamma_2} determines the Riemannian manifold and the metric on it up to an isometry. In the Euclidian space, the result yields that an anisotropic wave speed inside a compact body is determined, up to a natural coordinate transformations, by measurements on the boundary of the body even when wave sources are kept away from receivers. Moreover, we show that if we have three arbitrary non-empty open subsets Γ1,Γ2\Gamma_1,\Gamma_2, and Γ3\Gamma_3 of the boundary, then the restricted Dirichlet-to-Neumann operators ΛΓj,Γk\Lambda_{\Gamma_j,\Gamma_k} for 1≀j<k≀31\leq j<k\leq 3 determine the Riemannian manifold to an isometry. Similar result is proven also for the finite-time boundary measurements when the hyperbolic equation satisfies an exact controllability condition

    A rigorous analysis of high order electromagnetic invisibility cloaks

    Full text link
    There is currently a great deal of interest in the invisibility cloaks recently proposed by Pendry et al. that are based in the transformation approach. They obtained their results using first order transformations. In recent papers Hendi et al. and Cai et al. considered invisibility cloaks with high order transformations. In this paper we study high order electromagnetic invisibility cloaks in transformation media obtained by high order transformations from general anisotropic media. We consider the case where there is a finite number of spherical cloaks located in different points in space. We prove that for any incident plane wave, at any frequency, the scattered wave is identically zero. We also consider the scattering of finite energy wave packets. We prove that the scattering matrix is the identity, i.e., that for any incoming wave packet the outgoing wave packet is the same as the incoming one. This proves that the invisibility cloaks can not be detected in any scattering experiment with electromagnetic waves in high order transformation media, and in particular in the first order transformation media of Pendry et al. We also prove that the high order invisibility cloaks, as well as the first order ones, cloak passive and active devices. The cloaked objects completely decouple from the exterior. Actually, the cloaking outside is independent of what is inside the cloaked objects. The electromagnetic waves inside the cloaked objects can not leave the concealed regions and viceversa, the electromagnetic waves outside the cloaked objects can not go inside the concealed regions. As we prove our results for media that are obtained by transformation from general anisotropic materials, we prove that it is possible to cloak objects inside general crystals.Comment: The final version is now published in Journal of Physics A: Mathematical and Theoretical, vol 41 (2008) 065207 (21 pp). Included in IOP-Selec

    Maternal psychological distress in primary care and association with child behavioural outcomes at age three

    Get PDF
    Observational studies indicate children whose mothers have poor mental health are at increased risk of socio-emotional behavioural difficulties, but it is unknown whether these outcomes vary by the mothers’ mental health recognition and treatment status. To examine this question, we analysed linked longitudinal primary care and research data from 1078 women enrolled in the Born in Bradford cohort. A latent class analysis of treatment status and self-reported distress broadly categorised women as (a) not having a common mental disorder (CMD) that persisted through pregnancy and the first 2 years after delivery (N = 756, 70.1 %), (b) treated for CMD (N = 67, 6.2 %), or (c) untreated (N = 255, 23.7 %). Compared to children of mothers without CMD, 3-year-old children with mothers classified as having untreated CMD had higher standardised factor scores on the Strengths and Difficulties Questionnaire (d = 0.32), as did children with mothers classified as having treated CMD (d = 0.27). Results were only slightly attenuated in adjusted analyses. Children of mothers with CMD may be at risk for socio-emotional and behavioural difficulties. The development of effective treatments for CMD needs to be balanced by greater attempts to identify and treat women. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00787-015-0777-2) contains supplementary material, which is available to authorized users
    • 

    corecore