281 research outputs found

    Engineering single donor detectors in doped silicon

    Full text link
    We demonstrate the possibility of engineering a single donor transistor directly from a phosphorous doped quantum dot by making use of the intrinsic glassy behaviour of the structure as well as the complex electron dynamics during cooldown. Characterisation of the device at low temperatures and in magnetic field shows single donors can be electrostatically isolated near one of the tunnel barrier with either a single or a doubly occupancy. Such a model is well supported by capacitance-based simulations. Ability of using the D0 of such isolated donor as a charge detector is demonstrated by observing the charge stability diagram of a nearby and capacitively coupled semi-connected double quantum dot.Comment: 10 pages, supplementary information available on demand, new version as accepted for publication in PR

    Involvement of Purinergic P2X4 Receptors in Alcohol Intake of High-Alcohol-Drinking (HAD) Rats

    Get PDF
    Background: The P2X4 receptor is thought to be involved in regulating alcohol-consuming behaviors and ethanol (EtOH) has been reported to inhibit P2X4 receptors. Ivermectin is an anti-parasitic agent that acts as a positive allosteric modulator of the P2X4 receptor. The current study examined the effects of systemically- and centrally-administered ivermectin on alcohol drinking of replicate lines of high-alcohol-drinking (HAD-1/HAD-2) rats, and the effects of lentiviral-delivered short-hairpin RNAs (shRNAs) targeting P2rx4 on EtOH intake of female HAD2 rats. Method: For the 1st experiment, adult male HAD-1 & HAD-2 rats were given 24-hr free-choice access to 15% EtOH vs. water. Dose-response effects of ivermectin (1.5 to 7.5 mg/kg i.p.) on EtOH intake were determined; the effects of ivermectin were then examined for 2% w/v sucrose intake over 5 consecutive days. In the 2nd experiment, female HAD-2 rats were trained to consume 15% EtOH under 2-hr limited access conditions, and dose-response effects of intracerebroventricular (ICV) administration of ivermectin (0.5 to 2.0 μg) were determined over 5 consecutive days. The 3rd experiment determined the effects of microinfusion of a lentivirus expressing P2rx4 shRNAs into the posterior ventral tegmental area (VTA) on 24-hr EtOH free-choice drinking of female HAD-2 rats. Results: The highest i.p. dose of ivermectin reduced alcohol drinking (30-45%) in both rat lines, but did not alter sucrose intake. HAD-2 rats appeared to be more sensitive than HAD1 rats to the effects of ivermectin. ICV administration of ivermectin reduced 2-hr limited access intake (∼35%) of femal

    Reduced Levels of mGlu2 Receptors within the Prelimbic Cortex Are Not Associated with Elevated Glutamate Transmission or High Alcohol Drinking

    Get PDF
    Background A Grm2 cys407* stop codon mutation, which results in a loss of the metabotropic glutamate 2 (mGlu2) receptor protein, was identified as being associated with high alcohol drinking by alcohol-preferring (P) rats. The objectives of the current study were to characterize the effects of reduced levels of mGlu2 receptors on glutamate transmission and alcohol drinking. Methods Quantitative no-net-flux microdialysis was used to test the hypothesis that basal extracellular glutamate levels in the prelimbic (PL) cortex and nucleus accumbens shell (NACsh) will be higher in P than Wistar rats. A lentiviral-delivered short-hairpin RNA (shRNA)-mediated knockdown was used to test the hypothesis that reduced levels of mGlu2 receptors within the PL cortex will increase voluntary alcohol drinking by Wistar rats. A linear regression analysis was used to test the hypothesis that there will be a significant correlation between the Grm2 cys407* mutation and level of alcohol intake. Results Extracellular glutamate concentrations within the PL cortex (3.6 ± 0.6 vs. 6.4 ± 0.6 μM) and NACsh (3.2 ± 0.4 vs. 6.6 ± 0.6 μM) were significantly lower in female P than female Wistar rats. Western blot detected the presence of mGlu2 receptors in these regions of female Wistar rats, but not female P rats. Micro-infusion of shRNAs into the PL cortex significantly reduced local mGlu2 receptor levels (by 40%), but did not alter voluntary alcohol drinking in male Wistar rats. In addition, there was no significant correlation between the Grm2 mutation and alcohol intake in 36 rodent lines (r = 0.29, p > 0.05). Conclusions Collectively, these results suggest a lack of association between the loss of mGlu2 receptors and glutamate transmission in the NACsh and PL cortex of female P rats, and between the level of mGlu2 receptors in the PL cortex and alcohol drinking of male Wistar rats

    A guide to laboratory use of the squid Loligo pealei

    Get PDF
    From the Preface: Unfortunately, a guide like this one does not happen simply. It is the product of polite requests (at first polite, anyway) from colleagues, of mutual nagging, and of wives with persistant memories. What we are attempting to achieve with this contribution is a consolidation of many years of personal experience with squid into a source of practical information hopefully useful to the increasing number of people working with the squid. One does not undertake the task of preparing such a guide for a limited audience with unreserved enthusiasm. It always seems the same amount of work could produce something for a larger audience and therefore, hopefully, of greater significance. On the other hand when the hours and days spent on developing handling procedures, techniques, and "tricks of the squid trade" are considered it seems untenable not to pass this otherwise unpublishable data on in hope of saving others like pain and time. Therefore, what we have attempted to do is informally put together information that should prove useful to people interested in all aspects of squid biology. In this way we hope to make the laboratory utilization of the squid more efficient not only from the standpoint of the investigator and the collector but also for the future of the species Loligo pealei

    Reduction of alcohol drinking of alcohol-preferring (P) and high-alcohol drinking (HAD1) rats by targeting phosphodiesterase-4 (PDE4)

    Get PDF
    RATIONALE: Phosphodiesterase-4 (PDE4) and neuroimmune signaling have been posited to regulate alcohol drinking. OBJECTIVES: This study evaluated the involvement of PDE4 and Il22ra2 on ethanol (EtOH) intake by alcohol-preferring (P) and high-alcohol-drinking (HAD1) rats. METHODS: Exp 1 determined the dose-response effects of PDE4 inhibitors, rolipram, and Ro 20-1724, on 2 h/day free-choice EtOH intake by adult P and HAD1 rats. Exps 2-3 examined the effects of repeated administration with the PDE4 inhibitors on EtOH or sucrose intake and locomotor behavior. Exp 4 determined Pde4-associated gene expression differences in subregions of the extended amygdala, between high- and low-alcohol-consuming rat lines. Exp 5 evaluated the effects of infusing short hairpin RNA to knock down Il22ra2 in the nucleus accumbens (NAc) shell on a 24-h free-choice EtOH drinking by P rats. RESULTS: Administration of rolipram or Ro 20-1724 reduced EtOH intake by P rats; Ro 20-1724 reduced EtOH intake by HAD1 rats. Repeated rolipram or Ro 20-1724 exposure reduced EtOH intake by P and HAD1 rats. PDE4 inhibition induced motor impairment during the first hour of EtOH intake by P rats. Higher gene expression levels for PDE4A were found in the NAc shell of P vs NP rats. ShRNAs targeting Il22ra2 in the NAc shell significantly reduced chronic EtOH intake. CONCLUSIONS: PDE4 and neuroinflammatory/immune signaling pathways could represent molecular targets for the treatment of alcohol use disorders in genetically predisposed subjects. This study underscores the importance of testing compounds over multiple days and rat lines when determining efficacy to disrupt excessive alcohol intake

    The Sodium Channel beta4 Auxiliary Subunit Selectively Controls Long-Term Depression in Core Nucleus Accumbens Medium Spiny Neurons

    Get PDF
    Voltage-gated sodium channels are essential for generating the initial rapid depolarization of neuronal membrane potential during action potentials (APs) that enable cell-to-cell communication, the propagation of signals throughout the brain, and the induction of synaptic plasticity. Although all brain neurons express one or several variants coding for the core pore-forming sodium channel alpha subunit, the expression of the beta (beta1-4) auxiliary subunits varies greatly. Of particular interest is the beta4 subunit, encoded by the Scn4b gene, that is highly expressed in dorsal and ventral (i.e., nucleus accumbens - NAc) striata compared to other brain regions, and that endows sodium channels with unique gating properties. However, its role on neuronal activity, synaptic plasticity, and behaviors related to drugs of abuse remains poorly understood. Combining whole-cell patch-clamp recordings with two-photon calcium imaging in Scn4b knockout (KO) and knockdown mice, we found that Scn4b altered the properties of APs in core accumbens medium spiny neurons (MSNs). These alterations are associated with a reduction of the probability of MSNs to evoke spike-timing-dependent long-term depression (tLTD) and a reduced ability of backpropagating APs to evoke dendritic calcium transients. In contrast, long-term potentiation (tLTP) remained unaffected. Interestingly, we also showed that amphetamine-induced locomotor activity was significantly reduced in male Scn4b KO mice compared to wild-type controls. Taken together, these data indicate that the Scn4b subunit selectively controls tLTD by modulating dendritic calcium transients evoked by backpropagating APs

    Lmo4 in the Basolateral Complex of the Amygdala Modulates Fear Learning

    Get PDF
    Pavlovian fear conditioning is an associative learning paradigm in which mice learn to associate a neutral conditioned stimulus with an aversive unconditioned stimulus. In this study, we demonstrate a novel role for the transcriptional regulator Lmo4 in fear learning. LMO4 is predominantly expressed in pyramidal projection neurons of the basolateral complex of the amygdala (BLC). Mice heterozygous for a genetrap insertion in the Lmo4 locus (Lmo4gt/+), which express 50% less Lmo4 than their wild type (WT) counterparts display enhanced freezing to both the context and the cue in which they received the aversive stimulus. Small-hairpin RNA-mediated knockdown of Lmo4 in the BLC, but not the dentate gyrus region of the hippocampus recapitulated this enhanced conditioning phenotype, suggesting an adult- and brain region-specific role for Lmo4 in fear learning. Immunohistochemical analyses revealed an increase in the number of c-Fos positive puncta in the BLC of Lmo4gt/+ mice in comparison to their WT counterparts after fear conditioning. Lastly, we measured anxiety-like behavior in Lmo4gt/+ mice and in mice with BLC-specific downregulation of Lmo4 using the elevated plus maze, open field, and light/dark box tests. Global or BLC-specific knockdown of Lmo4 did not significantly affect anxiety-like behavior. These results suggest a selective role for LMO4 in the BLC in modulating learned but not unlearned fear

    Quantum advantage in postselected metrology

    Get PDF
    Abstract: In every parameter-estimation experiment, the final measurement or the postprocessing incurs a cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from a trial) to cost. We show that this improvement stems from the negativity of a particular quasiprobability distribution, a quantum extension of a probability distribution. In a classical theory, in which all observables commute, our quasiprobability distribution is real and nonnegative. In a quantum-mechanically noncommuting theory, nonclassicality manifests in negative or nonreal quasiprobabilities. Negative quasiprobabilities enable postselected experiments to outperform optimal postselection-free experiments: postselected quantum experiments can yield anomalously large information-cost rates. This advantage, we prove, is unrealizable in any classically commuting theory. Finally, we construct a preparation-and-postselection procedure that yields an arbitrarily large Fisher information. Our results establish the nonclassicality of a metrological advantage, leveraging our quasiprobability distribution as a mathematical tool

    Molecular characterisation of protist parasites in human-habituated mountain gorillas (Gorilla beringei beringei), humans and livestock, from Bwindi impenetrable National Park, Uganda

    Get PDF
    Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions
    • …
    corecore