3,903 research outputs found

    Probing Electroweak Top Quark Couplings at Hadron Colliders

    Full text link
    We consider QCD t\bar{t}\gamma and t\bar{t}Z production at hadron colliders as a tool to measure the tt\gamma and ttZ couplings. At the Tevatron it may be possible to perform a first, albeit not very precise, test of the tt\gamma vector and axial vector couplings in t\bar{t}\gamma production, provided that more than 5 fb^{-1} of integrated luminosity are accumulated. The t\bar{t}Z cross section at the Tevatron is too small to be observable. At the CERN Large Hadron Collider (LHC) it will be possible to probe the tt\gamma couplings at the few percent level, which approaches the precision which one hopes to achieve with a next-generation e^+e^- linear collider. The LHC's capability of associated QCD t\bar{t}V (V=\gamma, Z) production has the added advantage that the tt\gamma and ttZ couplings are not entangled. For an integrated luminosity of 300 fb^{-1}, the ttZ vector (axial vector) coupling can be determined with an uncertainty of 45-85% (15-20%), whereas the dimension-five dipole form factors can be measured with a precision of 50-55%. The achievable limits improve typically by a factor of 2-3 for the luminosity-upgraded (3 ab^{-1}) LHC.Comment: Revtex3, 30 pages, 9 Figures, 6 Table

    Systems Technology Laboratory (STL) compendium of utilities

    Get PDF
    Multipurpose programs, routines and operating systems are described. Data conversion and character string comparison subroutine are included. Graphics packages, and file maintenance programs are also included

    Operational Experience with a Cryogenic Axial-Centrifugal Compressor

    Get PDF
    The Large Hadron Collider (LHC), presently under construction at CERN, requires large refrigeration capacity at 1.8 K. Compression of gaseous helium at cryogenic temperatures is therefore inevitable. Together with subcontractors, Linde Kryotechnik has developed a prototype machine. This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating at ambient temperature. Integrated in a test facility for superconducting magnets the machine has been commissioned without major problems and successfully gone through the acceptance test in autumn 1995. Subsequent steps were initiated to improve efficiency of this prototype. This paper describes operating experience gained so far and reports on measured performance prior to and after constructional modifications

    Bias in the journal impact factor

    Full text link
    The ISI journal impact factor (JIF) is based on a sample that may represent half the whole-of-life citations to some journals, but a small fraction (<10%) of the citations accruing to other journals. This disproportionate sampling means that the JIF provides a misleading indication of the true impact of journals, biased in favour of journals that have a rapid rather than a prolonged impact. Many journals exhibit a consistent pattern of citation accrual from year to year, so it may be possible to adjust the JIF to provide a more reliable indication of a journal's impact.Comment: 9 pages, 8 figures; one reference correcte

    Investigation of the McDonnell-Douglas orbiter and booster shuttle models in proximity at Mach numbers 2.0 to 6.0. Volume 7: Proximity data at Mach 4 and 6, interference free and launch vehicle data

    Get PDF
    Aerodynamic data obtained from a space shuttle abort stage separation wind tunnel test are presented. The .00556 scale models of the orbiter and booster configuration were tested in close proximity using dual balances during the time period of April 21 to April 27 1971. Data were obtained for both booster and orbiter over an angle of attack range from -10 to 10 deg for zero degree sideslip angle. The models were tested at several relative incidence angles and separation distances and power conditions. Plug nozzles utilizing air were used to simulate booster and orbiter plumes at various altitudes along a nominal ascent trajectory. Powered conditions were 100, 50, 25 and 0 percent of full power for the orbiter and 100, 50 and 0 percent of full power for the booster. Pitch control effectiveness data were obtained for both booster and orbiter with power on and off. In addition, launch vehicle data with and without booster power were obtained utilizing a single balance in the booster model. Data were also obtained with the booster canard off in close proximity and for the launch configuration
    corecore