396 research outputs found
Use of microwave remote sensing data to monitor spatio temporal characteristics of surface soil moisture at local and regional scales
Hydrologic processes, such as runoff production or evapotranspiration, largely depend on the variation of soil moisture and its spatial pattern. The interaction of electromagnetic waves with the land surface can be dependant on the water content of the uppermost soil layer. Especially in the microwave domain of the electromagnetic spectrum, this is the case. New sensors as e.g. ENVISAT ASAR, allow for frequent, synoptically and homogeneous image acquisitions over larger areas. Parameter inversion models are therefore developed to derive bio- and geophysical parameters from the image products. The paper presents a soil moisture inversion model for ENVISAT ASAR data for local and regional scale applications. The model is validated against in situ soil moisture measurements. The various sources of uncertainties, being related to the inversion process are assessed and quantified
Magnetic Properties of the low dimensional spin system (VO)PO: ESR and susceptibility
Experimental results on magnetic resonance (ESR) and magnetic susceptibility
are given for single crystalline (VO)PO. The crystal growth
procedure is briefly discussed. The susceptibility is interpreted numerically
using a model with alternating spin chains. We determine =51 K and
=0.2. Furthermore we find a spin gap of meV from our ESR
measurements. Using elastic constants no indication of a phase transition
forcing the dimerization is seen below 300 K.Comment: 7 pages, REVTEX, 7 figure
Renormalization of tensor-network states
We have discussed the tensor-network representation of classical statistical
or interacting quantum lattice models, and given a comprehensive introduction
to the numerical methods we recently proposed for studying the tensor-network
states/models in two dimensions. A second renormalization scheme is introduced
to take into account the environment contribution in the calculation of the
partition function of classical tensor network models or the expectation values
of quantum tensor network states. It improves significantly the accuracy of the
coarse grained tensor renormalization group method. In the study of the quantum
tensor-network states, we point out that the renormalization effect of the
environment can be efficiently and accurately described by the bond vector.
This, combined with the imaginary time evolution of the wavefunction, provides
an accurate projection method to determine the tensor-network wavfunction. It
reduces significantly the truncation error and enable a tensor-network state
with a large bond dimension, which is difficult to be accessed by other
methods, to be accurately determined.Comment: 18 pages 23 figures, minor changes, references adde
Rydberg trimers and excited dimers bound by internal quantum reflection
Quantum reflection is a pure wave phenomena that predicts reflection of a
particle at a changing potential for cases where complete transmission occurs
classically. For a chemical bond, we find that this effect can lead to
non-classical vibrational turning points and bound states at extremely large
interatomic distances. Only recently has the existence of such ultralong-range
Rydberg molecules been demonstrated experimentally. Here, we identify a broad
range of molecular lines, most of which are shown to originate from two
different novel sources: a single-photon associated triatomic molecule formed
by a Rydberg atom and two ground state atoms and a series of excited dimer
states that are bound by a so far unexplored mechanism based on internal
quantum reflection at a steep potential drop. The properties of the Rydberg
molecules identified in this work qualify them as prototypes for a new type of
chemistry at ultracold temperatures.Comment: 6 pages, 3 figures, 1 tabl
Thermodynamical Properties of a Spin 1/2 Heisenberg Chain Coupled to Phonons
We performed a finite-temperature quantum Monte Carlo simulation of the
one-dimensional spin-1/2 Heisenberg model with nearest-neighbor interaction
coupled to Einstein phonons. Our method allows to treat easily up to 100
phonons per site and the results presented are practically free from truncation
errors. We studied in detail the magnetic susceptibility, the specific heat,
the phonon occupation, the dimerization, and the spin-correlation function for
various spin-phonon couplings and phonon frequencies. In particular we give
evidence for the transition from a gapless to a massive phase by studying the
finite-size behavior of the susceptibility. We also show that the dimerization
is proportional to for .Comment: 10 pages, 17 Postscript Figure
High Magnetic Field ESR in the Haldane Spin Chains NENP and NINO
We present electron spin resonance experiments in the one-dimensional
antiferromagnetic S=1 spin chains NENP and NINO in pulsed magnetic fields up to
50T. The measured field dependence of the quantum energy gap for B||b is
analyzed using the exact diagonalization method and the density matrix
renormalization group method (DMRG). A staggered anisotropy term (-1)^i d(S_i^x
S_i^z + S_i^z S_i^x) was considered for the first time in addition to a
staggered field term (-1)^i S_i^x B_st. We show that the spin dynamics in high
magnetic fields strongly depends on the orthorhombic anisotropy E.Comment: 4 pages, RevTeX, 4 figure
Implications of Charge Ordering for Single-Particle Properties of High-Tc Superconductors
The consequences of disordered charge stripes and antiphase spin domains for
the properties of the high-temperature superconductors are studied. We focus on
angle-resolved photoemission spectroscopy and optical conductivity, and show
that the many unusual features of the experimentally observed spectra can be
understood naturally in this way. This interpretation of the data, when
combined with evidence from neutron scattering and NMR, suggests that
disordered and fluctuating stripe phases are a common feature of
high-temperature superconductors.Comment: 4 pages, figures by fax or mai
Reexamination of the microscopic couplings of the quasi one-dimensional antiferromagnet CuGeO_3
Experimental data for the magnetic susceptibility and magnetostriction of
CuGeO_3 are analyzed within a one-dimensional antiferromagnetic model with
nearest ({J_1}) and next-nearest neighbour interactions ({J_2}). We show that
the ratio of the exchange constants in the antiferromagnetic chains of CuGeO_3
amounts to = 0.354(0.01), i.e. it is significantly larger than
the critical value for the formation of a spontaneous gap in the magnetic
excitation spectrum without lattice dimerization. The susceptibility data are
reproduced by our numerical results over the temperature range from 20K to 950K
to a high degree of accuracy for and .
The pressure dependence of the exchange constants is estimated from
magnetostriction data. Furthermore, the specific heat data are checked on
consistency against the calculated entropy of the above model.Comment: 9 pages, REVTEX, 5 figure
- …