1,705 research outputs found

    The Effect of Integrating Travel Time

    Full text link
    This contribution demonstrates the potential gain for the quality of results in a simulation of pedestrians when estimated remaining travel time is considered as a determining factor for the movement of simulated pedestrians. This is done twice: once for a force-based model and once for a cellular automata-based model. The results show that for the (degree of realism of) simulation results it is more relevant if estimated remaining travel time is considered or not than which modeling technique is chosen -- here force-based vs. cellular automata -- which normally is considered to be the most basic choice of modeling approach.Comment: preprint of Pedestrian and Evacuation 2012 conference (PED2012) contributio

    The design concept of the 6-degree-of-freedom hydraulic shaker at ESTEC

    Get PDF
    The European Space Agency (ESA) has decided to extend its test facilities at the European Space and Technology Center (ESTEC) at Noordwijk, The Netherlands, by implementing a 6-degree-of-freedom hydraulic shaker. This shaker will permit vibration testing of large payloads in the frequency range from 0.1 Hz to 100 Hz. Conventional single axis sine and random vibration modes can be applied without the need for a configuration change of the test set-up for vertical and lateral excitations. Transients occurring during launch and/or landing of space vehicles can be accurately simulated in 6-degrees-of-freedom. The performance requirements of the shaker are outlined and the results of the various trade-offs, which are investigated during the initial phase of the design and engineering program are provided. Finally, the resulting baseline concept and the anticipated implementation plan of the new test facility are presented

    Characterizing correlations of flow oscillations at bottlenecks

    Full text link
    "Oscillations" occur in quite different kinds of many-particle-systems when two groups of particles with different directions of motion meet or intersect at a certain spot. We present a model of pedestrian motion that is able to reproduce oscillations with different characteristics. The Wald-Wolfowitz test and Gillis' correlated random walk are shown to hold observables that can be used to characterize different kinds of oscillations

    Sub 20 nm Short Channel Carbon Nanotube Transistors

    Full text link
    Carbon nanotube field-effect transistors with sub 20 nm long channels and on/off current ratios of > 1000000 are demonstrated. Individual single-walled carbon nanotubes with diameters ranging from 0.7 nm to 1.1 nm grown from structured catalytic islands using chemical vapor deposition at 700 degree Celsius form the channels. Electron beam lithography and a combination of HSQ, calix[6]arene and PMMA e-beam resists were used to structure the short channels and source and drain regions. The nanotube transistors display on-currents in excess of 15 microA for drain-source biases of only 0.4 Volt.Comment: Nano Letters in pres

    Pedestrian Traffic: on the Quickest Path

    Full text link
    When a large group of pedestrians moves around a corner, most pedestrians do not follow the shortest path, which is to stay as close as possible to the inner wall, but try to minimize the travel time. For this they accept to move on a longer path with some distance to the corner, to avoid large densities and by this succeed in maintaining a comparatively high speed. In many models of pedestrian dynamics the basic rule of motion is often either "move as far as possible toward the destination" or - reformulated - "of all coordinates accessible in this time step move to the one with the smallest distance to the destination". Atop of this rule modifications are placed to make the motion more realistic. These modifications usually focus on local behavior and neglect long-ranged effects. Compared to real pedestrians this leads to agents in a simulation valuing the shortest path a lot better than the quickest. So, in a situation as the movement of a large crowd around a corner, one needs an additional element in a model of pedestrian dynamics that makes the agents deviate from the rule of the shortest path. In this work it is shown, how this can be achieved by using a flood fill dynamic potential field method, where during the filling process the value of a field cell is not increased by 1, but by a larger value, if it is occupied by an agent. This idea may be an obvious one, however, the tricky part - and therefore in a strict sense the contribution of this work - is a) to minimize unrealistic artifacts, as naive flood fill metrics deviate considerably from the Euclidean metric and in this respect yield large errors, b) do this with limited computational effort, and c) keep agents' movement at very low densities unaltered

    Optimized Protocol for Proportionate CNS Cell Retrieval as a Versatile Platform for Cellular and Molecular Phenomapping in Aging and Neurodegeneration

    Get PDF
    Efficient purification of viable neural cells from the mature CNS has been historically challenging due to the heterogeneity of the inherent cell populations. Moreover, changes in cellular interconnections, membrane lipid and cholesterol compositions, compartment-specific biophysical properties, and intercellular space constituents demand technical adjustments for cell isolation at different stages of maturation and aging. Though such obstacles are addressed and partially overcome for embryonic premature and mature CNS tissues, procedural adaptations to an aged, progeroid, and degenerative CNS environment are underrepresented. Here, we describe a practical workflow for the acquisition and phenomapping of CNS neural cells at states of health, physiological and precocious aging, and genetically provoked neurodegeneration. Following recent, unprecedented evidence of post-mitotic cellular senescence (PoMiCS), the protocol appears suitable for such de novo characterization and phenotypic opposition to classical senescence. Technically, the protocol is rapid, efficient as for cellular yield and well preserves physiological cell proportions. It is suitable for a variety of downstream applications aiming at cell type-specific interrogations, including cell culture systems, Flow-FISH, flow cytometry/FACS, senescence studies, and retrieval of omic-scale DNA, RNA, and protein profiles. We expect suitability for transfer to other CNS targets and to a broad spectrum of engineered systems addressing aging, neurodegeneration, progeria, and senescence

    Quickest Paths in Simulations of Pedestrians

    Full text link
    This contribution proposes a method to make agents in a microscopic simulation of pedestrian traffic walk approximately along a path of estimated minimal remaining travel time to their destination. Usually models of pedestrian dynamics are (implicitly) built on the assumption that pedestrians walk along the shortest path. Model elements formulated to make pedestrians locally avoid collisions and intrusion into personal space do not produce motion on quickest paths. Therefore a special model element is needed, if one wants to model and simulate pedestrians for whom travel time matters most (e.g. travelers in a station hall who are late for a train). Here such a model element is proposed, discussed and used within the Social Force Model.Comment: revised version submitte

    Scanning spreading resistance microscopy of two-dimensional diffusion of boron implanted in free-standing silicon nanostructures

    No full text
    B implants of 1keV, 1×10¹⁵at.cm⁻² into 125-nm-wide, free-standing Si nanostructures have been characterized using scanning spreading resistancemicroscopy following a 0s, 1050°Canneal in N₂. A curved diffusion front has been observed. B in the center of the ridge diffuses further than at the sides. A similar effect has been observed in SUPREM-IV simulations. It is attributed to a reduction in transient enhanced diffusion close to the vertical surfaces due to recombination of ion-implantation-induced excess Si self-interstitials

    Experimental study of pedestrian flow through a bottleneck

    Get PDF
    In this work the results of a bottleneck experiment with pedestrians are presented in the form of total times, fluxes, specific fluxes, and time gaps. A main aim was to find the dependence of these values from the bottleneck width. The results show a linear decline of the specific flux with increasing width as long as only one person at a time can pass, and a constant value for larger bottleneck widths. Differences between small (one person at a time) and wide bottlenecks (two persons at a time) were also found in the distribution of time gaps.Comment: accepted for publication in J. Stat. Mec
    corecore