111 research outputs found

    SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery.

    Get PDF
    Since the publication of the Society for Immunotherapy of Cancer\u27s (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients

    Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk

    Get PDF
    Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies (GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction algorithms-TargetScan and miRanda-to perform allele-specific queries, and integrated differential allelic expression (DAE) and expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant ( P≤5×10-8 ) raSNPs, plus proxies. We found that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk. Also, 11.5% (6 out of 52) raSNPs located in 3'-untranslated regions of putative miRNA target genes were predicted to alter miRNA::mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression, improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.Funding Agency Portuguese Foundation for Science and Technology CRESC ALGARVE 2020 European Union (EU) 303745 Maratona da Saude Award DL 57/2016/CP1361/CT0042 SFRH/BPD/99502/2014 CBMR-UID/BIM/04773/2013 POCI-01-0145-FEDER-022184info:eu-repo/semantics/publishedVersio

    One-step synthesis of PbSe-ZnSe composite thin film

    Get PDF
    This study investigates the preparation of PbSe-ZnSe composite thin films by simultaneous hot-wall deposition (HWD) from multiple resources. The XRD result reveals that the solubility limit of Pb in ZnSe is quite narrow, less than 1 mol%, with obvious phase-separation in the composite thin films. A nanoscale elemental mapping of the film containing 5 mol% PbSe indicates that isolated PbSe nanocrystals are dispersed in the ZnSe matrix. The optical absorption edge of the composite thin films shifts toward the low-photon-energy region as the PbSe content increases. The use of a phase-separating PbSe-ZnSe system and HWD techniques enables simple production of the composite package

    Optical Properties of GaAs Quantum Dots Fabricated by Filling of Self-Assembled Nanoholes

    Get PDF
    Experimental results of the local droplet etching technique for the self-assembled formation of nanoholes and quantum rings on semiconductor surfaces are discussed. Dependent on the sample design and the process parameters, filling of nanoholes in AlGaAs generates strain-free GaAs quantum dots with either broadband optical emission or sharp photoluminescence (PL) lines. Broadband emission is found for samples with completely filled flat holes, which have a very broad depth distribution. On the other hand, partly filling of deep holes yield highly uniform quantum dots with very sharp PL lines

    A Two-Gene Balance Regulates Salmonella Typhimurium Tolerance in the Nematode Caenorhabditis elegans

    Get PDF
    Lysozymes are antimicrobial enzymes that perform a critical role in resisting infection in a wide-range of eukaryotes. However, using the nematode Caenorhabditis elegans as a model host we now demonstrate that deletion of the protist type lysozyme LYS-7 renders animals susceptible to killing by the fatal fungal human pathogen Cryptococcus neoformans, but, remarkably, enhances tolerance to the enteric bacteria Salmonella Typhimurium. This trade-off in immunological susceptibility in C. elegans is further mediated by the reciprocal activity of lys-7 and the tyrosine kinase abl-1. Together this implies a greater complexity in C. elegans innate immune function than previously thought

    Atomic-scale visualization of initial growth of homoepitaxial SrTiO3 thin film on an atomically ordered substrate

    Full text link
    The initial homoepitaxial growth of SrTiO3 on a (\surd13\times\surd13) - R33.7{\deg}SrTiO3(001) substrate surface, which can be prepared under oxide growth conditions, is atomically resolved by scanning tunneling microscopy. The identical (\surd13\times\surd13) atomic structure is clearly visualized on the deposited SrTiO3 film surface as well as on the substrate. This result indicates the transfer of the topmost Ti-rich (\surd13\times\surd13) structure to the film surface and atomic-scale coherent epitaxy at the film/substrate interface. Such atomically ordered SrTiO3 substrates can be applied to the fabrication of atom-by-atom controlled oxide epitaxial films and heterostructures

    Osteopontin Impairs Host Defense during Established Gram-Negative Sepsis Caused by Burkholderia pseudomallei (Melioidosis)

    Get PDF
    Melioidosis is a severe tropical disease caused by infection with the bacterium Burkholderia (B.) pseudomallei. In northeast Thailand infection with this bacterium is the major cause of community-acquired septicemia with a mortality rate up to 40%. Extending the knowledge on the mechanisms of host defense against B. pseudomallei infection would be helpful to improve treatment of this severe illness. Osteopontin (OPN) is a cytokine that is involved in several immune responses that occur during bacterial infection. In this study, we investigated levels of OPN in patients with melioidosis, and studied the function of OPN during experimental melioidosis in mice. We found that OPN concentrations were elevated in patients with severe melioidosis, and that high OPN concentrations are associated with poor outcome in patients with melioidosis. In experimental melioidosis in mice plasma and lung OPN levels were also increased. Moreover, mice with melioidosis that were deficient for OPN demonstrated reduced bacterial numbers in their lungs, diminished pulmonary tissue injury, and decreased neutrophil infiltration into the lungs during established melioidosis. Moreover, these mice displayed a delayed mortality as compared to control mice. In conclusion, sustained production of OPN impairs host defense during melioidosis
    • …
    corecore