4,194 research outputs found
NNLO QCD corrections to event shape variables in electron positron annihilation
Precision studies of QCD at electron-positron colliders are based on
measurements of event shapes and jet rates. To match the high experimental
accuracy, theoretical predictions to next-to-next-to-leading order (NNLO) in
QCD are needed for a reliable interpretation of the data. We report the first
calculation of NNLO corrections O(alpha_s^3) to three-jet production and
related event shapes, and discuss their phenomenological impact.Comment: Contributed to 2007 Europhysics Conference on High Energy Physics,
Manchester, England 19-25 July 200
Nano-porosity in GaSb induced by swift heavy ion irradiation
Nano-porous structures form in GaSb after ion irradiation with 185 MeV Au ions. The porous layer formation is governed by the dominant electronic energy loss at this energy regime. The porous layer morphology differs significantly from that previously reported for low-energy, ion-irradiated GaSb. Prior to the onset of porosity, positron annihilation lifetime spectroscopy indicates the formation of small vacancy clusters in single ion impacts, while transmission electron microscopy reveals fragmentation of the GaSb into nanocrystallites embedded in an amorphous matrix. Following this fragmentation process, macroscopic porosity forms, presumably within the amorphous phase.The authors thank the Australian Research Council for
support and the staff at the ANU Heavy Ion Accelerator
Facility for their continued technical assistance. R.C.E. acknowledges the support
from the Office of Basic Energy Sciences of the U.S. DOE
(Grant No. DE-FG02-97ER45656)
Precision measurements of alphas at HERA
Recent determinations of alphas(Mz) from the H1 and ZEUS Collaborations using
inclusive-jet cross-section measurements in neutral current deep inelastic
scattering at high Q2 are presented. A combined value of alphas(mz)=0.1198 +-
0.0019 (exp.) +- 0.0026 (th.) was obtained from these measurements. The
determinations of alphas at various scales clearly show the running of the
coupling from HERA jet data alone and in agreement with the prediction of QCD.Comment: 5 pages, 4 figure
Scanning spreading resistance microscopy of two-dimensional diffusion of boron implanted in free-standing silicon nanostructures
B implants of 1keV, 1×10¹⁵at.cm⁻² into 125-nm-wide, free-standing Si nanostructures have been characterized using scanning spreading resistancemicroscopy following a 0s, 1050°Canneal in N₂. A curved diffusion front has been observed. B in the center of the ridge diffuses further than at the sides. A similar effect has been observed in SUPREM-IV simulations. It is attributed to a reduction in transient enhanced diffusion close to the vertical surfaces due to recombination of ion-implantation-induced excess Si self-interstitials
Congenital diaphragmatic hernia: the impact of embryological studies
In recent years, a substantial research effort within the specialty of pediatric surgery has been devoted to improving our knowledge of the natural history and pathophysiology of congenital diaphragmatic hernias (CDH) and pulmonary hypoplasia (PH). However, the embryological background has remained elusive because certain events of normal diaphragmatic development were still unclear and appropriate animal models were lacking. Most authors assume that delayed or inhibited closure of the diaphragm will result in a diaphragmatic defect that is wide enough to allow herniation of the gut into the fetal thoracic cavity. However, we feel that this assumption is not based on appropriate embryological observations. To clarify whether it was correct, we restudied the morphology of pleuroperitoneal openings in normal rat embryos. Shortly before, a model for CDH and PH had been established in rats using nitrofen (2,4-di-chloro-phenyl-p-nitrophenyl ether) as teratogen. We used this model in an attempt to answer the following questions: (1) When does the diaphragmatic defect appear? (2) Are the pleuroperitoneal canals the precursors of the diaphragmatic defect? (3) Why is the lung hypoplastic in babies and infants with CDH? In our study we made following observations: (1) The typical findings of CDH and PH cannot be explained by inhibited closure of the pleuroperitoneal "canals". In normal development, the pleuroperitoneal openings are always too small to allow herniation of gut into the thoracic cavity. (2) The maldevelopment of the diaphragm starts rather early in the embryonic period (5th week). The lungs of CDH rats are significantly smaller than those of control rats at the end of the embryonic period (8th week). (3) The maldevelopment of the lungs in rats with CDH is "secondary" to the defect of the diaphragm. (4) The defect of the lungs is "structural" rather than "functional". Complete spontaneous correction of these lung defects is unlikely even after fetal intervention. (5) The "fetal lamb model" does not completely mimic the full picture of CDH, because the onset of the defect lies clearly in the fetal period. We believe that our rat model is better. It is especially useful for describing the abnormal embryology of this lesion
Recommended from our members
Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant
Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse
Swift heavy ion irradiation of GaSb: from ion tracks to nano-porous networks
Ion track formation, amorphisation, and the formation of porosity in
crystalline GaSb induced by 185 MeV Au swift heavy ion irradiation is
investigated as a function of fluence and irradiation angle relative to the
surface normal. RBS/C and SAXS reveal an ion track radius between 3 nm and 5
nm. The observed pore morphology and saturation swelling of GaSb films shows a
strong irradiation angle dependence. Raman spectroscopy and scanning electron
microscopy show that the ion tracks act as a source of strain in the material
leading to macroscopic plastic flow at high fluences and off normal
irradiation. The results are consistent with the ion hammering model for
glasses. Furthermore, wide angle X-ray scattering reveals the formation of nano
crystallites inside otherwise amorphous GaSb after the onset of porosity
High-precision measurements from LHC to FCC-ee
This document provides a writeup of all contributions to the workshop on
"High precision measurements of : From LHC to FCC-ee" held at CERN,
Oct. 12--13, 2015. The workshop explored in depth the latest developments on
the determination of the QCD coupling from 15 methods where high
precision measurements are (or will be) available. Those include low-energy
observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv)
decays, (v) soft parton-to-hadron fragmentation functions, as well as
high-energy observables: (vi) global fits of parton distribution functions,
(vii) hard parton-to-hadron fragmentation functions, (viii) jets in p
DIS and -p photoproduction, (ix) photon structure function in
-, (x) event shapes and (xi) jet cross sections in
collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv)
top-quark cross sections in proton-(anti)proton collisions. The current status
of the theoretical and experimental uncertainties associated to each extraction
method, the improvements expected from LHC data in the coming years, and future
perspectives achievable in collisions at the Future Circular Collider
(FCC-ee) with (1--100 ab) integrated luminosities yielding
10 Z bosons and jets, and 10 W bosons and leptons, are
thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong
coupling world-average value, = 0.1177 0.0013, is about
1\%. Some participants believed this may be reduced by a factor of three in the
near future by including novel high-precision observables, although this
opinion was not universally shared. At the FCC-ee facility, a factor of ten
reduction in the uncertainty should be possible, mostly thanks to
the huge Z and W data samples available.Comment: 135 pages, 56 figures. CERN-PH-TH-2015-299, CoEPP-MN-15-13. This
document is dedicated to the memory of Guido Altarell
- …