90 research outputs found

    Symmetry Analysis of Second Harmonic Generation at Surfaces of Antiferromagnets

    Full text link
    Using group theory we classify the nonlinear magneto-optical response at low-index surfaces of fcc antiferromagnets, such as NiO. Structures consisting of one atomic layer are discussed in detail. We find that optical second harmonic generation is sensitive to surface antiferromagnetism in many cases. We discuss the influence of a second type of magnetic atoms, and also of a possible oxygen sublattice distortion on the output signal. Finally, our symmetry analysis yields the possibility of antiferromagnetic surface domain imaging even in the presence of magnetic unit-cell doubling.Comment: 23 pages, 10 figures incorporated. Accepted to Phys. Rev. B, scheduled for July'9

    Quantum versus classical descriptions of sub-Poissonian light generation in three-wave mixing

    Get PDF
    Sub-Poissonian light generation in the non-degenerate three-wave mixing is studied numerically and analytically within quantum and classical approaches. Husimi Q-functions and their classical trajectory simulations are analysed to reveal a special regime corresponding to the time-stable sub-Poissonian photocount statistics of the sum-frequency mode. Conditions for observation of this regime are discussed. Theoretical predictions of the Fano factor and explanation of the extraordinary stabilization of the sub-Poissonian photocount behavior are obtained analytically by applying the classical trajectories. Scaling laws for the maximum sub-Poissonian behavior are found. Noise suppression levels in the non-degenerate vs degenerate three-wave mixing are discussed on different time scales compared to the revival times. It is shown that the non-degenerate conversion offers much better stabilization of the suppressed noise in comparison to that of degenerate process.Comment: 9 pages, 12 figures, to be published in J. Optics

    Vacuum Squeezing in Atomic Media via Self-Rotation

    Full text link
    When linearly polarized light propagates through a medium in which elliptically polarized light would undergo self-rotation, squeezed vacuum can appear in the orthogonal polarization. A simple relationship between self-rotation and the degree of vacuum squeezing is developed. Taking into account absorption, we find the optimum conditions for squeezing in any medium that can produce self-rotation. We then find analytic expressions for the amount of vacuum squeezing produced by an atomic vapor when light is near-resonant with a transition between various low-angular-momentum states. Finally, we consider a gas of multi-level Rb atoms, and analyze squeezing for light tuned near the D-lines under realistic conditions.Comment: 10 pages, 6 figures; Submitted to PR

    Inversionless light amplification and optical switching controlled by state-dependent alignment of molecules

    Full text link
    We propose a method to achieve amplification without population inversion by anisotropic molecules whose orientation by an external electric field is state-dependent. It is based on decoupling of the lower-state molecules from the resonant light while the excited ones remain emitting. The suitable class of molecules is discussed, the equation for the gain factor is derived, and the magnitude of the inversionless amplification is estimated for the typical experimental conditions. Such switching of the sample from absorbing to amplifying via transparent state is shown to be possible both with the aid of dc and ac control electric fields.Comment: AMS-LaTeX v1.2, 4 pages with 4 figure
    • …
    corecore