550 research outputs found

    The Domain Chaos Puzzle and the Calculation of the Structure Factor and Its Half-Width

    Full text link
    The disagreement of the scaling of the correlation length xi between experiment and the Ginzburg-Landau (GL) model for domain chaos was resolved. The Swift-Hohenberg (SH) domain-chaos model was integrated numerically to acquire test images to study the effect of a finite image-size on the extraction of xi from the structure factor (SF). The finite image size had a significant effect on the SF determined with the Fourier-transform (FT) method. The maximum entropy method (MEM) was able to overcome this finite image-size problem and produced fairly accurate SFs for the relatively small image sizes provided by experiments. Correlation lengths often have been determined from the second moment of the SF of chaotic patterns because the functional form of the SF is not known. Integration of several test functions provided analytic results indicating that this may not be a reliable method of extracting xi. For both a Gaussian and a squared SH form, the correlation length xibar=1/sigma, determined from the variance sigma^2 of the SF, has the same dependence on the control parameter epsilon as the length xi contained explicitly in the functional forms. However, for the SH and the Lorentzian forms we find xibar ~ xi^1/2. Results for xi determined from new experimental data by fitting the functional forms directly to the experimental SF yielded xi ~ epsilon^-nu} with nu ~= 1/4 for all four functions in the case of the FT method, but nu ~= 1/2, in agreement with the GL prediction, in the the case of the MEM. Over a wide range of epsilon and wave number k, the experimental SFs collapsed onto a unique curve when appropriately scaled by xi.Comment: 15 pages, 26 figures, 1 tabl

    Finite Size Scaling of Domain Chaos

    Get PDF
    Numerical studies of the domain chaos state in a model of rotating Rayleigh-Benard convection suggest that finite size effects may account for the discrepancy between experimentally measured values of the correlation length and the predicted divergence near onset

    The Algorithmic Origins of Life

    Full text link
    Although it has been notoriously difficult to pin down precisely what it is that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and in particular, that top-down (or downward) causation -- where higher-levels influence and constrain the dynamics of lower-levels in organizational hierarchies -- may be a major contributor to the hierarchal structure of living systems. Here we propose that the origin of life may correspond to a physical transition associated with a shift in causal structure, where information gains direct, and context-dependent causal efficacy over the matter it is instantiated in. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some potential novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.Comment: 13 pages, 1 tabl

    Bowel Preparation for Colonoscopy with Sodium Phosphate Solution versus Polyethylene Glycol-Based Lavage: A Multicenter Trial

    Get PDF
    Background: Adequate bowel preparation is essential for accurate colonoscopy. Both oral sodium phosphate (NaP) and polyethylene glycol-based lavage (PEG-ELS) are used predominantly as bowel cleansing modalities. NaP has gained popularity due to low drinking volume and lower costs. The purpose of this randomized multicenter observer blinded study was to compare three groups of cleansing (NaP, NaP + sennosides, PEG-ELS + sennosides) in reference to tolerability, acceptance, and cleanliness. Patient and Methods: 355 outpatients between 18 and 75 years were randomized into three groups (A, B, C) receiving NaP = A, NaP, and sennosides = B or PEG-ELS and sennosides = C. Gastroenterologists performing colonoscopies were blinded to the type of preparation. All patients documented tolerance and adverse events. Vital signs, premedication, completeness, discomfort, and complications were recorded. A quality score (0–4) of cleanliness was generated. Results: The three groups were similar with regard to age, sex, BMI, indication for colonoscopy, and comorbidity. Drinking volumes (L) (A = 4.33 + 1.2, B = 4.56 + 1.18, C = 4.93 + 1.71) were in favor of NaP (P = .005). Discomfort from ingested fluid was recorded in A = 39.8% (versus C: P = .015), B = 46.6% (versus C: P = .147), and C = 54.6%. Differences in tolerability and acceptance between the three groups were statistically not significant. No differences in adverse events and the cleanliness effects occurred in the three groups (P = .113). The cleanliness quality scores 0–2 were calculated in A: 77.7%, B: 86.7%, and C: 85.2%. Conclusions: These data fail to demonstrate significant differences in tolerability, acceptance, and preparation quality between the three types of bowel preparation for colonoscopy. Cleansing with NaP was not superior to PEG-ELS

    Rotating Convection in an Anisotropic System

    Full text link
    We study the stability of patterns arising in rotating convection in weakly anisotropic systems using a modified Swift-Hohenberg equation. The anisotropy, either an endogenous characteristic of the system or induced by external forcing, can stabilize periodic rolls in the K\"uppers-Lortz chaotic regime. For the particular case of rotating convection with time-modulated rotation where recently, in experiment, chiral patterns have been observed in otherwise K\"uppers-Lortz-unstable regimes, we show how the underlying base-flow breaks the isotropy, thereby affecting the linear growth-rate of convection rolls in such a way as to stabilize spirals and targets. Throughout we compare analytical results to numerical simulations of the Swift-Hohenberg equation

    Whirling Hexagons and Defect Chaos in Hexagonal Non-Boussinesq Convection

    Full text link
    We study hexagon patterns in non-Boussinesq convection of a thin rotating layer of water. For realistic parameters and boundary conditions we identify various linear instabilities of the pattern. We focus on the dynamics arising from an oscillatory side-band instability that leads to a spatially disordered chaotic state characterized by oscillating (whirling) hexagons. Using triangulation we obtain the distribution functions for the number of pentagonal and heptagonal convection cells. In contrast to the results found for defect chaos in the complex Ginzburg-Landau equation and in inclined-layer convection, the distribution functions can show deviations from a squared Poisson distribution that suggest non-trivial correlations between the defects.Comment: 4 mpg-movies are available at http://www.esam.northwestern.edu/~riecke/lit/lit.html submitted to New J. Physic

    Defect Chaos of Oscillating Hexagons in Rotating Convection

    Full text link
    Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the bandcenter these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the bandcenter a transition to a frozen vortex state is found.Comment: 4 pages, 6 figures. Fig. 3a with lower resolution no

    Dissociative recombination and electron-impact de-excitation in CH photon emission under ITER divertor-relevant plasma conditions

    Get PDF
    For understanding carbon erosion and redeposition in nuclear fusion devices, it is important to understand the transport and chemical break-up of hydrocarbon molecules in edge plasmas, often diagnosed by emission of the CH A^2\Delta - X^2\Pi Ger\"o band around 430 nm. The CH A-level can be excited either by electron-impact or by dissociative recombination (D.R.) of hydrocarbon ions. These processes were included in the 3D Monte Carlo impurity transport code ERO. A series of methane injection experiments was performed in the high-density, low-temperature linear plasma generator Pilot-PSI, and simulated emission intensity profiles were benchmarked against these experiments. It was confirmed that excitation by D.R. dominates at T_e < 1.5 eV. The results indicate that the fraction of D.R. events that lead to a CH radical in the A-level and consequent photon emission is at least 10%. Additionally, quenching of the excited CH radicals by electron impact de-excitation was included in the modeling. This quenching is shown to be significant: depending on the electron density, it reduces the effective CH emission by a factor of 1.4 at n_e=1.3*10^20 m^-3, to 2.8 at n_e=9.3*10^20 m^-3. Its inclusion significantly improved agreement between experiment and modeling

    Theoretical analysis of the electronic structure of the stable and metastable c(2x2) phases of Na on Al(001): Comparison with angle-resolved ultra-violet photoemission spectra

    Full text link
    Using Kohn-Sham wave functions and their energy levels obtained by density-functional-theory total-energy calculations, the electronic structure of the two c(2x2) phases of Na on Al(001) are analysed; namely, the metastable hollow-site structure formed when adsorption takes place at low temperature, and the stable substitutional structure appearing when the substrate is heated thereafter above ca. 180K or when adsorption takes place at room temperature from the beginning. The experimentally obtained two-dimensional band structures of the surface states or resonances are well reproduced by the calculations. With the help of charge density maps it is found that in both phases, two pronounced bands appear as the result of a characteristic coupling between the valence-state band of a free c(2x2)-Na monolayer and the surface-state/resonance band of the Al surfaces; that is, the clean (001) surface for the metastable phase and the unstable, reconstructed "vacancy" structure for the stable phase. The higher-lying band, being Na-derived, remains metallic for the unstable phase, whereas it lies completely above the Fermi level for the stable phase, leading to the formation of a surface-state/resonance band-structure resembling the bulk band-structure of an ionic crystal.Comment: 11 pages, 11 postscript figures, published in Phys. Rev. B 57, 15251 (1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
    corecore