313 research outputs found

    Analysis of spatial and temporal distribution of single and multiple vehicle crash in Western Australia: a comparison study

    Get PDF

    A model for the growth of a population exhibiting stage structure: cannibalism and cooperation

    Get PDF
    AbstractA model of a stage-structured population with fixed maturity time for the immature stage and interaction terms that may be interpreted as cooperation or cannibalism is proposed. The existence and stability of the equilibrium set are discussed. In the case of cannibalism, it is shown by a numerical example how a Hopf bifurcation could result in a stable periodic solution

    Particle multiplicities at LHC and deviations from limiting fragmentation

    Full text link
    The pseudorapidity density of charged particles produced at LHC collisions are predicted by using two complementary production mechanisms with a set of consistent integrated and unintegrated parton distributions. We discuss the limiting fragmentation hypothesis and its possible violation, and we compare our model with other partonic models.Comment: 26 pages, 27 figures, Accepted for publication in Phys. Rev.

    Prediction for unintegrated parton distributions

    Full text link
    Unintegrated parton distributions in the proton and nucleus are predicted by a modified DGLAP equation incorporating the shadowing corrections, which include exact energy-momentum conservation in each splitting and fusion vertices. We find that the nuclear shadowing effects are obvious, although they are far from the saturation limit. On the other hand, we point out that the suppression of the unintegrated gluon distribution toward lower kt2k_t^2 may arise from the valence-like input rather than the saturation effects.Comment: Review article, 50 pages, 19 figures. To appear in Physical Review

    Net water uptake within the ischemic penumbra predicts the presence of the midline shift in patients with acute ischemic stroke

    Get PDF
    ObjectiveThe study aimed to explore the association between midline shift (MLS) and net water uptake (NWU) within the ischemic penumbra in acute ischemic stroke patients.MethodsThis was a retrospective cohort study that examined patients with anterior circulation stroke. Net water uptake within the acute ischemic core and penumbra was calculated using data from admission multimodal CT scans. The primary outcome was severe cerebral edema measured by the presence of MLS on 24 to 48 h follow-up CT scans. The presence of a significant MLS was defined by a deviation of the septum pellucidum from the midline on follow-up CT scans of at least 3 mm or greater due to the mass effect of ischemic edema. The net water uptake was compared between patients with and without MLS, followed by logistic regression analyses and receiver operating characteristics (ROCs) to assess the predictive power of net water uptake in MLS.ResultsA total of 133 patients were analyzed: 50 patients (37.6%) with MLS and 83 patients (62.4%) without. Compared to patients without MLS, patients with MLS had higher net water uptake within the core [6.8 (3.2–10.4) vs. 4.9 (2.2–8.1), P = 0.048] and higher net water uptake within the ischemic penumbra [2.9 (1.8–4.3) vs. 0.2 (−2.5–2.7), P < 0.001]. Penumbral net water uptake had higher predictive performance than net water uptake of the core in MLS [area under the curve: 0.708 vs. 0.603, p < 0.001]. Moreover, the penumbral net water uptake predicted MLS in the multivariate regression model, adjusting for age, sex, admission National Institutes of Health Stroke Scale (NIHSS), diabetes mellitus, atrial fibrillation, ischemic core volume, and poor collateral vessel status (OR = 1.165; 95% CI = 1.002–1.356; P = 0.047). No significant prediction was found for the net water uptake of the core in the multivariate regression model.ConclusionNet water uptake measured acutely within the ischemic penumbra could predict severe cerebral edema at 24–48 h

    Contributions of gluon recombination to saturation phenomena

    Full text link
    Parton distributions in the small xx region are numerically predicted by using a modified DGLAP equation with the GRV-like input distributions. We find that gluon recombination at twist-4 level obviously suppresses the rapid growth of parton densities with xx decrease. We show that before the saturation scale Qs2Q^2_s is reached, saturation and partial saturation appear in the small xx behavior of parton distributions in nucleus and free proton, respectively. The antishadowing contributions to the saturation phenomena are also discussed.Comment: 23 pages, LATEX, 22 figures, to appear in Phys. Rev.

    Quantitative assessment of collateral time on perfusion computed tomography in acute ischemic stroke patients

    Get PDF
    Background and aimGood collateral circulation is recognized to maintain perfusion and contribute to favorable clinical outcomes in acute ischemic stroke. This study aimed to derive and validate an optimal collateral time measurement on perfusion computed tomography imaging for patients with acute ischemic stroke.MethodsThis study included 106 acute ischemic stroke patients with complete large vessel occlusions. In deriving cohort of 23 patients, the parasagittal region of the ischemic hemisphere was divided into six pial arterial zones according to pial branches of the middle cerebral artery. Within the 85 arterial zones with collateral vessels, the receiver operating characteristic analysis was performed to derive the optimal collateral time threshold for fast collateral flow on perfusion computed tomography. The reference for fast collateral flow was the peak contrast delay on the collateral vessels within each ischemic arterial zone compared to its contralateral normal arterial zone on dynamic computed tomography angiography. The optimal perfusion collateral time threshold was then tested in predicting poor clinical outcomes (modified Rankin score of 5–6) and final infarct volume in the validation cohort of 83 patients.ResultsFor the derivation cohort of 85 arterial zones, the optimal collateral time threshold for fast collateral flow on perfusion computed tomography was a delay time of 4.04 s [area under the curve = 0.78 (0.67, 0.89), sensitivity = 73%, and specificity = 77%]. Therefore, the delay time of 4 s was used to define the perfusion collateral time. In the validation cohort, the perfusion collateral time showed a slightly higher predicting power than dynamic computed tomography angiography collateral time in poor clinical outcomes (area under the curve = 0.72 vs. 0.67; P < 0.001). Compared to dynamic computed tomography angiography collateral time, the perfusion collateral time also had better performance in predicting final infarct volume (R-squared values = 0.55 vs. 0.23; P < 0.001).ConclusionOur results indicate that perfusion computed tomography can accurately quantify the collateral time after acute ischemic stroke

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Does distance hinder the collaboration between Australian universities in the humanities, arts and social sciences?

    Get PDF
    Australia is a vast country with an average distance of 1911 km between its eight state capital cities. The quantitative impact of this distance on collaboration practices between Australian universities and between different types of Australian universities has not been examined previously and hence our knowledge about the spatial distribution effects, if any, on collaboration practices and opportunities is very limited. The aim of the study reported here was therefore to analyse the effect of distance on the collaboration activities of humanities, arts and social science scholars in Australia, using co-authorship as a proxy for collaboration. In order to do this, gravity models were developed to determine the distance effects on external collaboration between universities in relation to geographic region and institutional alliance of 25 Australian universities. Although distance was found to have a weak impact on external collaboration, the strength of the research publishing record within a university (internal collaboration) was found to be an important factor in determining external collaboration activity levels. This finding would suggest that increasing internal collaboration within universities could be an effective strategy to encourage external collaboration between universities. This strategy becomes even more effective for universities that are further away from each other. Establishing a hierarchical structure of different types of universities within a region can optimise the location advantage in the region to encourage knowledge exchange within that region. The stronger network could also attract more collaboration between networks
    • …
    corecore