14,525 research outputs found
Passenger ride comfort technology for transport aircraft situations
Research in ride comfort and of the resultant technology is overviewed. Several useful relations derived from the technology are: input environments to the vehicle; aircraft operations; and aircraft configurations. Input environments which influence the ride motion environment consist of naturally occuring phenomena such as gusts or turbulence and man generated phenomena such as trailing vortex wakes or runway roughness. Aircraft operations influence ride environments in the form of motions caused by maneuvers, of pressure changes caused by rapid descents, or of too high temperature. Aircraft configurations influence the ride environment by size and shape of external surfaces which generate aerodynamic perturbing forces; by onboard equipment, such as power plant noise and vibrations; and by passive equipment which directly interfaces the passengers such as marginal size seats with limited elbowroom and legroom
Reaction of cobalt in SO2 atmospheric at elevated temperatures
The reaction rate of cobalt in SO2 argon environments was measured at 650 C, 700 C, 750 C and 800 C. Product scales consist primarily of an interconnected sulfide phase in an oxide matrix. At 700 C to 800 C a thin sulfide layer adjacent to the metal is also observed. At all temperatures, the rapid diffusion of cobalt outward through the interconnected sulfide appears to be important. At 650 C, the reaction rate slows dramatically after five minutes due to a change in the distribution of these sulfides. At 700 C and 750 C the reaction is primarily diffusion controlled values of diffusivity of cobalt (CoS) calculated from this work show favorable agreement with values of diffusivity of cobalt (CoS) calculated from previous sulfidation work. At 800 C, a surface step becomes rate limiting
Optimal low thrust escape viewed as a resonance phenomenon
Second order perturbation solution to modified optimal low thrust escape proble
Origin of the Thermal Radiation in a Solid-State Analog of a Black-Hole
An effective black-hole-like horizon occurs, for electromagnetic waves in
matter, at a surface of singular electric and magnetic permeabilities. In a
physical dispersive medium this horizon disappears for wave numbers with
. Nevertheless, it is shown that Hawking radiation is still emitted if
free field modes with are in their ground state.Comment: 13 Pages, 3 figures, Revtex with epsf macro
Comment on "Accelerated Detectors and Temperature in (Anti) de Sitter Spaces"
It is shown how the results of Deser and Levin on the response of accelerated
detectors in anti-de Sitter space can be understood from the same general
perspective as other thermality results in spacetimes with bifurcate Killing
horizons.Comment: 5 pages, LaTe
Lattice Black Holes
We study the Hawking process on lattices falling into static black holes. The
motivation is to understand how the outgoing modes and Hawking radiation can
arise in a setting with a strict short distance cutoff in the free-fall frame.
We employ two-dimensional free scalar field theory. For a falling lattice with
a discrete time-translation symmetry we use analytical methods to establish
that, for Killing frequency and surface gravity satisfying
in lattice units, the continuum Hawking spectrum
is recovered. The low frequency outgoing modes arise from exotic ingoing modes
with large proper wavevectors that "refract" off the horizon. In this model
with time translation symmetry the proper lattice spacing goes to zero at
spatial infinity. We also consider instead falling lattices whose proper
lattice spacing is constant at infinity and therefore grows with time at any
finite radius. This violation of time translation symmetry is visible only at
wavelengths comparable to the lattice spacing, and it is responsible for
transmuting ingoing high Killing frequency modes into low frequency outgoing
modes.Comment: 26 pages, LaTeX, 2 figures included with psfig. Several improvements
in the presentation. One figure added. Final version to appear in Phys.Rev.
- …