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In this study a complete second order peft-urbatioﬁ solution to a modi-
fied optimal low thrust escape problem is presented. The optimal thrust
diréctic\’n is shown to be tangential to first order, and oscillatory to sec-
ond order with period ecual to that of the initial circular reference orbit.

The improvement of the optimal trajectory over a tengential thrust escape';:v*;"

trajectory is shown to be a second order resonance type effect.




I. Introduction

T

The problem of low thrust escape from sn initic.. circular orbit has

been studied by many researchers using a wide variety of methods, Es-

cape using a specified thrust program such as tangential, circumferential,

or radial has been studied from both a numerical and an approximate ana-
lytical viewpoint (References 1-12) Escape using an optimal control, de-
termined by the calculus of variations, has also been solved numerically®*®
but little analytical work has been done in this areal® On the other hand,
numerous studies of the optimal close-orbit transfer problem, both ana-

lytical and numerical, have been reported (Referénces‘ 12,17-23).

In this study a modification of the problem of minimum time escape
from an initial near circular orbit under low constant thrust accelei*atiox;
will be considered. As a result of prex;idus numerical studies, it is known
thé_t tangéntial thrust is near optimal, and tﬁat the 'optima; control angle
exhibits an 6scillatory behavior with a period near that of the Bsgulating
orbital period, and with a mean value near tangenti'al.. The maih purpose
.of tﬁis analysis is to explain: (1) the relat-ionsﬁjp between the optimal and
the tangential controls, and (2) the physicgi significance of the oscillatory

behavior of the optimal steering angle,

II. Formal Problem Definition

‘The épecific problem to be studied is as follows: given a space ve-
hicle in an initial near-circular orbit with energy E,, find the control angle
program which will take the vehicle to a specified energy level E £ in mini-
mum time. The vehicle is assumed to be subject to a low constant thrust
acceleration engine, the gravity field is inverse square, and all motion is

confined to the initial orbital plane. The equations of motion are:

= V siny
9=-%ctysy .
V=--$—siny+acos¢
ﬁ--(—-#f—) ccsy-l- siné»




where

i

radial distance

polar angler
= total velocity magnitude

flight path angle measured from the local horizontal

control angle measured from the velocity direction

p o < < o »
"

thrust acceleration

as shown in Figure 1.

reference
direction

Figure 1

of variations, where the performance index and the Hamiltonian are

J=tf-to

H =)\, Vsiny +); 1:'{- cosy - Ay f; siny + k..(% 'I%V) cosy

s cose s Maing

and the optimal control is defined by




The multiplier equations are .
: i b V2
= - + -
| N =, TZ CO8Y &)\3-35- siny )\4(;;-; ;3%)
A, =0 ,
- 1 1
-)\, siny - xz — COSY - Ng{— + 'z&'z cosy+a
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The boundary conditions are

= I

to =0 SV -y T
r(0) = Ro ; Az ftg) = 0
. 0(0) =0 - , "4&1‘):0

V) a/ = Rowp , Htg) =1
pAs (tf) -

Y(O) Rm s Mftf) W -

where the last four terminal conditions are given by the transversality
conditions, and the particular choice of the initial fhght path angle will be

explained later.

III. Approximate Analytical Solution

, Since 6 .does not influence the problem and A, (t) = 0, only the sixth
order system defined by (r,v,y.\;,\3 ,A¢) Will be considered. A solution

in the form of an expansion in powers of a, the thrust acceleration, will be
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assumed as follows:

"

r=ry +ar; +afr; +-..
V=V, +aVv, + a’v, +
Y TYo t+oay, taty, +
k; = 9)*!1,,4' az)q; +.
N =l +afhgy teee
A =ulg; +aihg 4+ ,
8ing = fo +ap, +alpy +: -
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| ~ 1lla, Zero order siate variable:-solutions

After substituting the above expansions into the system of equations
and grouping terms in powers of a, the zero order state equations are

ko = Vg 8inyq

d .
" 3oz Sinve

( T )COSYQ
o

The solution of these equatmns sub;ec* to the given initial conditmns is

\'fo

ro(t) = Ro
Vo(t) = Rowp
Yolt) = 0

That is, the zero order solution is a circular orbit of radius Re.

Ilb. First order state and multiplier solutions

The first order system of equations obtainéd from the expansions is
r, =V, sinyg + Voy;CO8 Yq

(E—l snwo - Ya cosyg) + ag

Vv, = ’ f
_ V2 b Vv *
v = (2 -:_-: _—°Tl+ 2 —-‘%—‘—) C08 Yo --—(—9- -E:)(nsmw ""{,jaSYtD
4 —
VO po
1 Vg2
Ay - Vo \ T2 _2;.%)7\4:
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Since the multipher equatiens are mde;enﬂexa af the ﬁrﬁ or
tions, they may be snlved easﬂar whea the zero er@” ats

known. The general solu



Mat) 2c, + I8 CcOS (wot + p')

Ro
Ay () = 2 4 2 ‘
31 (t) = o + Tigwg C1€08 (wot + B)

Na () = c; 8in (wot + B)

From the expansion of the terminal conditions in powers of s we find to
first order at t, that

f
C O Malt)- wohaytt) = 0
Malty) = 0
1
X:il(tf) = _a'z
which implies ,
Ay (t) = §§ -
1
A (t) = 2
N (t) =0 "
If.fonows immediately that
ag =1 . coséd =1
Bo =0 sin¢ = 0

Therefore, the optimal "escape’ control proéram to first order is tan-
gential thrust, " |

The first order state equations may now be solved using the tange

control program. The general-first order state solution is

r;t) =cg + :Et + Roc; sinwgt - Rec, CO8 wet

Vi) = - dugey - t+ Rmczcésgt = Rowgc) 8inwet

vit) = -—--;RZ + cjcoswt + c;sinwgt

The initial conditions for this systém are | E

(0 =0




which implies
2
1 (t) ™~

V) = -t

Ya ) ='ﬁj"m.?

It should be noted thai the above set of initial conditions, wiich correspond
to an orbit of low eccentricity, was first suggested by Lawden' in an effo: ,
to simplify the higher order solutions by elimination of the oscillatory first.

order motion of the escape spiral,

Ilc. Second ordér state and multiplier solutions

After substitution of the zero order solution into the second order

equations, we have
t2 = Rowoyz + V1V
Vz = -Ro’vz + 200’ ryy)
Y2 =%%Pz "'?Evz - E%,;Vf 'ﬁ?rxvl ‘%R":'gri "'mﬁx

).‘12 = '%: g2 - 2‘002“7\31

. 2
A3z = 'R'fo'k4z - MY

Ne2 = ~Rowoh ;2 + Rowo®haz = Vg = 2wedhg,; 1y
Sl
B Ve

The multiplier equations are independent of the state equations as in the
first order case, and may be solved easily when the first order solutions
are known, The general solution is |
' 3 A
M ) = woh; - Rzt + Rrcos (et + P)
: 2A

A = Ap + ==L cos (wet +

52 (t) Azl Rouy €08 fut +8)

hat) = -gm At

The second order termi;zﬂ; cméitieas ned
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boundary conditions in powers of a are

: = '- . -I-:L - L =
o i \ Maz (t) woész Mg M Vo) 0
e : f
| M2 (tg) = 0
Nz (t) = 0

which implies .
1
A,sin(mﬁtf-!- B) gl >0

A; + 24, cos (wotf +8)=0

Rowo
A, cos (wotf +B) =0

The second order multiplier solution is then-

Mt ® - gooy b gy Sinoott - £)

Mz ) = F—or—y sinun(t-tp

Maf) = - o[- cosontt- t]

From the control angle expansion given in the Appendix, it follows that

tan¢ = sin¢ = - :ﬂm.afr[l' C.Oswo(t'tf)]'

The optamal control angle is, therefore, osclllatorv with frequency wo and

AL TR o RO U S ST O T S AU A
.
. -
-
" -
-
L]

A T

amplitude of order a.

The second order state equations may now be solved using the oscil-"

latory control program. The complete solution with zero initial conditi
on the second order state is ' |

3 ].8-::03‘..:.,1:f
,rzet)=-wt‘ "SR 0-cosut)

+m[cusq(t tf)'l'wtsmwg(t t’) cﬁ%tf]

3 18 -~ cos e\gtf
V{ ft)" Rﬂr a coswot)

R ottt it - ont]

;
§
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8 1 18 - cos wo:tf
Yz (t) = Rofwoi t+ ZRgzw?t coswp(t - tf) - ( ZRo:rwgi )Sm'-'-‘ot

In the above expréssions it can be seen that "resonance" type terms
of the form tsint and tcost have been introdixced'by the control input
which oscillates at the natural frequency of the second order solution. It
will be shown that it is precisely these terms which make the optimal

"better" than the tangential escape trajectory.

We now have a complete second order expansion for the state variable ve

and multipliers of the optimal control problem as defined m sectmn I, The ,
only remaining unknown is the final time which may be found by application
of the terminal enargy ‘condition. Clearly, the solution as given will not i
hold to escape, i.e., E ' 0, since the various terms in the expansion will
become large and invalidate the assumed solution form, But if Ef is near

Eo, then the solution should be accurate.. Furthermore, the control angle

for this energy increase problem should behave like that in the initial por- -
tion of the escape trajectory. ' '

IV. Energy Increase Comparison

The rate of change of ene-rgy. is

| E =aV cos ¢
The small parameter expansion form of this equation is
7 E = a[Voap +a(Voa; + Vyag)+8* (Va0 +a3 Vo + 2, V)]

since

\' =VVQ + aV; + an3

cos¢ = ap + aa; + ala;

From the solutzca in Section 111 and the angle expansion given in ﬁe
Appendix it follows that
, a =1

'-r-g'*s_.’l?a?ig




For the tangential thrust program cos ¢ =1, which implies

apg =1 ,
a; =0 (tangential)
* a; = 0

The rates of change of energy on the optimal and the tangential tra-

jectories are then

: = + + a2 (V, +
Elopt a[Vo + aV, + a? (V, + Voa, D opt
i Elt = a[Vy + aV, + a?V,]
€ ~tan 0 1 Z tan
% Since there is no diiference between the optimal and the tangential trajec-
§ tories in the zero and first order solutions,
i opt °‘tan
2 opt lltsm
% [
% The second order expression for the velocity along the tangential trajec-
=
% tory can be determined easily. Since sin ¢ = 0 along the tangential trajec-
§ tory, then g, =0, After substituting g, = 0 into the second order equations

of motion above, the second order tangential state solution can be obtained,

The second order tangential velocity is

8
V, ltan = ool @ - cos wot?

Upon integration of the E-equations, the enei'gy changes along the

two trajectories at any time are

a? .
aE|,, - a{mt -4 at® + o [(33+2 cosuwg(t - to))wot - 36 sinwgt
+ zcosc.,,tfsinw,t--&sm?-w(t te) - -}smzwt,l}

AE] - a{R.u,t -4a’t? + --—-,[32«...t - BZBinw.t]}

‘
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The energy difference between the two trajectories at any time is

sin wpt

s
A(AE) = Iﬁ%m.? {{1 +2c0os wy(t - tf)]wot - 4sinwet + 2cos wotf

-4 sin 2wy(t - te) - -4sin Zmotf}

At the final time

3 .
A(AE), = ZI%Z;T [3uot; + $sin 2eot, - 4sinot]

It can be shown that A(AE), is positive for all wet,. In fact for small w@t ,
f :

£
the series expansion of the trigonometric expressions can ke used to show
that

a3

BBE)y = WORyor’ s tp®

Therefore, at the time the optimal trajectory reaches the sbecified termi-

nal energy, the energy level is highef than the energy level al the corre-
sponding time en the tangential trajectory. ..This" implies that the optimal
trajectory will reach a specified terminal energy level faster than the tan-
gential trajéctory. It must be noted, however, that at intermediate times
the eriergy on the tangential may be greater than on the optimal. In other
words, the tangential trajectory may reach intermediate energy levels
sooner than the optimal., This phenomenon should not be entirely unexpected
since the minimum time trajectory to a given energy level is not the mini-
mum tirrte trajectory to all lower energy levels, It is only the minimum
time trejectory from the initial state to all of the states occurring along
the optimal. |

It is well known that the tangential thrust program at each instant
maximizes the rate of energy increase along a trajectory!® . Therefore,
it is reasonable to ask how the optimal manages to improve on the tan-

gential Since it has been shown that the optimal is tangential to first order,

higner- order terms must produce the difference, In lookmg at the second N

order solutzon we fmd that the difference between the tangential and

P 1 MR 1
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optimal velocities may or may not be positive at any given time. However,
the difference between their mean values taken over a revolution-to-go,

fromt = tf - 2N+2)w/wy tot = tf - 2Nn/wg, is greater than zero, i.e.,

- = _ == _ _3a® _
Vzlopt Vz'ta.n av ZRowg ~ 0.

We conclude then that on the average the velocity is higher along the opti-
mal trajectory. If the tangential velocity is compared to the component of
the optimal velocity in the optimal thrust direction , the mean value of the

optimal velocity component is also found to exceed the mean value of the

tangential velocity, i.e.,

EY P ET] _ 3af
V cos ¢|0pt Vltan m >0

Therefore, not only does the optimal veélocity exceed the tangential velocity
on the average, but also its component in the direction of thrust exceeds |
the tangential velocity. Recalling that the rate of energy increase depends
only upon the thrust acceleration and the velocity component along the
thrust vector, we see that the optimal improves on the tangential By main -
taining a higher velocity compohent in the-directiox'l of thrust. The key to

the higher velocity on the .Optimal is the existence of the "resonance' type

terms in the optimal velocity expression which have been introduced by the

control angle oscillations.

Considering the motion from a physical viewpoint, on the escape

spiral the low thrust engine does work on the spacecraft causing its energy

® to increase. The vehicle spirals outward increasing its potential energy
and decreasing its kinetic energy. The rate of energy increase depends

highly upon the vehicle's velocity, i.e., its kinetic energy, and therefore

decreases as the vehicle moves out. The tangential thrust program maxi-

mizes the rate of energy increase at each point along the trajectory but
makes no direct effort to control the vehicle's velocity. - The optimal

thrust program, on the other hand, causes the energy to increase in such

a way that the rate of increase of potential energy and rate of decrease of

L T N Dot i s oy
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kinetic energy are reduced. The higher kinetic energy on the optimal then
gives the vehicle more capability for increasing its energy as it moves out.
The vehicle uses this additional capability in the .latter portion of the tra-
jectory to add more energy than it could on a tangential thrust trajectory,
and in this way achieves escape in less time, The oscillation in the opti-
mal control angle is a result of the trade-off between keeping the rate of

energy increase high and the rate of kinetic energy decrease low.

V. Numerical Results

In order to test the accuracy .of the approximate analytic solution, a
comparison was made with an exact optimum energy increase trajectory.
The exact solution was generated by numerically solving the two point - |
boundary ;ralue problem using a secant iteration method. Thg initial val-
ues of the analytic multipliers were used as first g;uesses in the iteration
scheme and seemed to work quite well, The inii‘:ial valueé for the state
variables were A
r(0) = 6.67817 X 10% meters
V(0) = 7.72580 X 10° meters/sec
y(0) = 2.19518 X 10 ° radians

These correspond to an initial orbit with the following eccentricity and

energy
e = 2.0%x10° |
Eo = -2.98440 X 107 newton;-meters/kg

The specified terminal energy was

E, = -2.86218 X 10" newton-meters/kg

which corresponds to wotf = 6w in the analytic solution, Since 5

4o =1.15687 X 10, the analytic t, = 1.629353 X 10* seconds. The termi-

nal time found in the numerical solution was tf' = 1.629351 X 10* seconds.
~ In Figures 2 and 3 a comparison between the analytical and numerical so-
lutions is made. The stste variables are in close agreement, as are the

costate variables, with the primary differences appearing as a slight

L A
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mean value offset in the velocity costate, and as a small period discrepancy

in both the velocity and flight path angle costates, The optimal control

angles are also close with only slight differences in period and amplitude,

a »‘éimm'iwmu

’ : A solution was also carried out using a terminal energy of

E, = -2.58695 X 107 newton-meters/kg

=20m, ort, =

In the analytic solution this energy level occurs at wgt ¢

f
5.43117 X 10* seconds. Numerical results give a final time, tf =

5.43116 x 10* seconds; and again the analytical and numerical state and

costate variables differed only slightly. The determination of the full

1

§ limitations of this approximation are currently under study. -

§ V1. Conclusions

% As a result of this anaiysis we reaffirm the well "known fact that for
% low thrust spiral escape trajectories, tangential thrust is nearly time

% optimal, and in fact, is optimal to first order in the thrust-acceleration
g . expansion solution, In addition, we now conclude that the observed oscil-
% lation in the optimal control angle is a second order resonance type phe-

nomenon which reduces the velocity loss and therefore increases the rate

of energy gain along the trajectory.

o RN A
b el Wi vt il i

W e




E
%
%
=
=1

At Al

10,

11.

12.

13,

14,

References

Tsien, H S., "Take-Off from Satellité Orbit," Journal of the Ameri-
can Rocket Society, Vol.23,No.4, July-August 1953,

Benney, D.J., "Escape from a Circular Orbit Using Tangential
Thrust,' Jet Propulsion, Vol.28, No.3, March 1958,

Dobrowolski, A., "Satellite Orbit Perturbations Under a Continuous
Radial Thrust of Small Magnitude," Jet Propulsion, Vol. 28, No. 10,
October 1958, .

Lass,H., J.Lorell," Low Acceleration Takeoff from a Satelhte Orbit," |
ARS Journal Vol.31 No.1, January 1961,

Cohen, M. J., "Low Thrust Spiral Trajectory of a Satellite of Variable
Mass," AIAA Journal, Vol.3, No. 10, October 1965,

Ting, L., S. Brofman, "On Take-cff from Circular Orbit by Small
Thrust," Z. Angew Math, Mech. ,44, 1964,

Zee, Chong-Hung,"Low Constant Tangential Thrust Spiral Trajec-
tories, AIAA Journal, Vol.1, No.7, July 1963,

Okhotsimskii, D.E., "Investigation of Motion in a Central Field under
the Influence of a Constant Tangential Acceleration,' Cosmic Research,
Vol. 2, No. 6, November-December 1964.

Shi, Y.Y., M.C. Eckstern, "Ascent or Descent from Satellite Orbit
by Low Thrust, "AIAA Journal, Vol.4, No, 12, 1966.

Perkins, F.M., "Flight Mechanics of Low Thrust Spacecraft,"
Journal of the Aerospace Sciences, May 1959.

Moeckel, W.E,, "Trajectories with Constant Tangential Thrust in
Central Gravitational Fields,' NASA Technical Report R-53, 1960,

- Melbourne, W.G., "Interplanetary Trajéectories and Payload Capa-

bilities of Advanced Propulsion Vehicles,' JPL Technical Report
32-68, January 1961. :

Efimov, G.B., D.E. Okhotsimskii, ';Optimal Acceleration of a Space-
craft in a Central Field," Cosmic Research, Vol,3, No.6, November-
December 1965, ‘

Sherman, B., "Low Thrust Escape Trajéctories," Proceedings 1AS
Symposium on Vehicle Systems Optimizations, New York, 1961. L




15,

16,

17.

18,

19.

20,

21,

22.

23,

Irving, J.H., "Low Thrust Flight: Variable Exhaust Velocities in
Gravitational Fields,' Space Technology, 10-01~10-54, (H, Siefert,
ed,) John Wiley and Sons, New York, 1959,

Lawden, D, F., "Optimal Eccape froin a Circular Orbit," Astronau-
tica Acta, 4, pp. 218-233, 1958,

Gobetz, Frank W., "Optimal Variable-Thrust Transfer of a Power-

Limited Rocket between Neighboring Circular Orbits,' AlAA Journal,

Vol, 2,No. 2, February 1964.

Mclntyre, John E,, Luigi Crocco, 'Linearized Treatment of the Op-
timal Transfer of a Thrust-Limited Vehicle between Coplanar Circu-
lar Orbits," Astronautica Acta, Vol.12, No.3, 1966.

Mclntyre, John E, , Luigi Crocco, "Higher Order Treatment of the
Optimal Transfer of a Thrust-Limited Vehicle between Coplanar
Circular Orbits," Astronautica Acta, Vol,13, No.1l, 1967,

Edelbaum, T.N., "Optimum Power-Limited Orbit Transfer in Strong
Gravity Fields," AIAA Journal, Vol.3, No.5, May 1965.

Edelbaum, T.N., "An Asymptotic Solution for Optimum Power-
Limited Orbit Transfer AIAA Journal, Vol.4, No.8, August 1966.

Hinz, H.K., "Optimal Low-Thrust Near-Circular Orbit Transfer,'
AIAA Journal Vol, 1, No.6, June 1963

Melbourne, W.G., Carl G, Sauer, "Optimum Thrust 'Programs for
Power-Limited Propulsmn Systems," JPL Technical Report 32-118,
1961.

AL e i, s

S

A -



=2
=

Appendix

In the solution of the systems of equations it was found easier to con-
sider separate expansions of the control angle functions rather than to use
the multiplier expressions directly. The optimal control program is de-

fined by

Ay
tan ¢ = NV

By assuming expansions of the form

Vo + aV, +2a%v, +

A

N3 = aky; + afny, + A%\, +

Ng =akg +ai\, tathg +
4 41 42 43

we obtain
“tan ¢ = no + an +lazﬂz +
where .
Mo * ‘{3‘:\‘%;
m s )\311 Vo | -Ml(_l +{3L1_ ]
R CS iﬁ)*k«(xﬁf—‘v’:&: )]

Next consider

sin ¢ = , Cos ¢ = ‘ ,
VANV NALHag Ve o

which can be written as

cosd = [1 + tanz¢]"!
sin ¢ = tan¢ cos ¢
Substituting in the expression for tan ¢ and expanding in a Taylor's series
about a = 0; . '
cos ¢ 2 gg + aay + a2ay +oo

where
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1 +nd

Qo

.%

a = -neMm (1 + ‘ﬂ:)-

A @ =4[3ninf (1 + né)"g - (M + 2ngna) (1 ¥ md)

Using the expansions for tan ¢ and cos ¢ we obtain

sin ¢ = Bo + ap; +a’p. + -

where
. 2""l
Bo = Mo(l + My 2
. -3
B =m (1 +ng) 1. mnoll + 1) *
z"'% 2 2 z"‘% 3..3..2 2"
bz =M (1+ 1)) °-F(-3non; + 2ngnz)(1+mg) 2 +Fmgmy (1 + )

1.

E
E
=
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Figure 2. Radial Distance, Total Velocity, and Their
Corresponding Costates
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