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Abstract

---	 In this study a complete second carder perturbation solution to a modi-
fied optimal low thrust escape problem is presented. The optimal thrust 	 -
direction is shown to be tangential to first order, and oscillatory to sec-r
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I. Introduction
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r = radial. distance

6 = polar angle

V = total velocity magnitude

y = flight path angle measured from the local horizontal

= control angle measured from the velocity direction

a = thrust acceleration

as shown in Figure 1.
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The multiplier equations are

t i ^ X 2 	cosy - 'ZX3 4 siny + ^ 4	 -r	 r	 r	 r V

_..

X3 = -a I siny - Xz	 cosy - k	
1 +	 cosy+ a	 sink,

_ r	 r	 rV	 V

i4 _ -XIVcosy+X? V siny+A3 ^ COS Y+A4	 V - -- `•—	 singr	 r	 r	 rV

The boundary conditions are

- to - 0	 AV-2 (tf} -	 E fr 
f

r (0) -- Ro	 X2 {t f} = 0

0 (0) - 0	 X4 (t f) - 0

V(0) _	 = Ro wo	 ,	 H (tf) - l-
RKS (tf)

Y(0) =	 k l (t f) 
-r t V={	 (	 0f}	 f)

where the last four terminal conditions are given by the transversality
conditions, and the particular choice of the initial flight path angle will be
explained later,

III,	 ApRroxi♦mate Analtical Solution

Since 9 does not influence the problem and X ? (t) = 0,, only the sixth
ordE r system defined by (r, v, y #X I : X3 , h4 ) w4_11 be considered.	 A solution
in the form of an expa,risivn in powers of a, the thrust acceleration, will be
assumed as follows:

r = ro	 + ar i + a3 r3 + .. .

V = No + aV + a2V2 # ... -

. XI = ak31 + e X33 + ...	 -

Sin 	 + e.82 -}-

Cod	 i 4r	 + 
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Ilia. Zero order state variable solutions

After substituting the above expansions into the system of equations

and grouping terms in powers of a, the zero girder state equations are

%o = Vo sinyo

V4 = - r̂^ sin 1'0
1 (VO2

Yo =^ rfl -	 cos

The solution of these equations subject to the given initial conditions is

ro (t) = RQ

Vo{t} - R,000	 -

YOM - 0

That is the zero order solution is a circular orbit of rad us .

Illb. First order state and multiplier . solutions

The first order system of equations obtained from the expansions is

l".
i31_ ro + r Z ^43



which implies

X11 (t)

1
X3 1 (t) '$

k41 {t) 0

It follows immediately that

&,ft = 1	 cc^s = 1
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x 11 (t) = C;z + a Cos. (wat + ^')

)t31 (t) _	 +	 c 1 cos ,(coot + ^)	 '
WO Rowo

X41 (t) = c l sin (wpt + ^)

From the expansion of the terminal conditions in powers of s we find to

first order at t f that

X11 (t f) - WO%31(tf) ' 0

X41(tf) = 0l
k314 f)
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Ulc. Second order stag and multiplier solutions

After substitution oZ the zero order solution into the second order

equations, we have

r2 S RowoY2 + Y I V I

' TZ = -RjwoZY2 + Zc.)O2 rIY I

Y2 = A r2 + V2	 vi " - rIV I - N r  +	 ^I

i IZ = -	 ' X42 - 2(002Y 1X31
Ro

132 ' ^
2 

A42 — kIIYI

1 42 = - P	 I2 +	 6ZX32 ` VI X II — ?"W )I I1 rI
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8	 l	 18 - cos wpt f

YY ^ = -1̀ i- t +	 t cosWO tt _ tf)	
w	

sin cant

In the above expressions it can be seen that "resonance" type terms
of the form t sin t and t cos t have been introduced by the control input
which oscillates at the natural frequency of the second order solution. It
will be shown that it is precisely these terms which make the optimal
"better" than the tangential escape trajectory.

We now have a complete second order expansion for the state variables
and multipliers of the optimal control problem as defined in section H. The
only remaining unknown is the final time which may be found by application
of the terminal energy condition. Clearly, the solution as given will not
hold to escape, is e. , E f = 0, since the various terms in the expansion will
become large and invalidate the assumed solution form. But if E f is near
E0 , then the solution should be accurate.. Furthermore, the control angle
for this energy increase problem should behave like that in the initial J*r-
tior► of the escape trajectory.

IV. Energy Increase Coml?arison

The rate of change of energy is

1 = a v cos

The small parameter expansion form of this equation is

E = a[VO&O + s (Vo&l + Vlao) + (Vt ao + as ve + al Vl } ]

since
V=Vs+aV1 + aivz

cos + = a$ + aa1 + at, az
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a, = 0	 (tangential)

Cr?	0

The rates of change of energy on the optimal and the tangential tra-
jectories are then

E 'opt = a[VO 
+ aVi 

+ a2 (VZ + V °aZ )]opt

E ^an ` a [Vo + aV'1 + az V2 ]tan

Since there is no difference between the optimal and the tangential trajec-

tories in the zero and first order solutions,

Vo lopt = VO Itan

vi ,opt = V1Itan

The second order expression for the velocity along the tangential trajec-

tory can be determined easily. Since sui = 0 along the tangential trajec-
tory, then P1 

s 0. After substituting A, = 0 into the second order equations
of motion above, the second order tangential state solution can be obtained.

The second order tangential velocity is

VZ(tan	 8 0 - cos wot)

Upon integration of the k-equations, the energy changes along the

two trajectories at any time are

1i	
2

	E^opt = R^wot - i at z + --	 [ (33 + 2 c os wo (t - t f) )cant - 3 6 s in wot

+ Z cos wdt f sin c ftt - 4 sin 2wa (t t f) - 4 sin ?.wot fl
t

AEkan =P 	 - 4a 't  tZ + `-- a 132wot - 32sinw9t1

.
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For the tangential thrust program cos $ 1. which implies
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The energy difference between the two trajectories at' any time is

3
A(AE) = -----a 1 + 2coscoo(t- t )]wot -- 4sinwot+2 cos wot sinwot4ROwOf

•	 A s in Zwo (t - tf ) - -I s in Zwot
f

At the final time

3
1S (11E)f = 40 - 13wotf + 4sin 2wotf - 4sinwotf]

It can be*shown that A(A-E) f is positive for all wotf.	 In fact for small watf,

the series expansion of the trigonometric expressions can be used to show

t that

A(AE)f -- 
40ROwe (wotf)5

Therefore, at the time the optimal trajectory reaches the specified termi-

nal energy, the energy level is higher than the energy level at the corre-

sponding time on the tangential trajectory.	 This- implies that the optimal

trajectory will reach a specified terminal energy level faster than the tan-

gential trajectory.	 It must be noted, however,, that at intermediate times_-

the energy on the' tangential may be greater than on the optimal. 	 In other

words, the tangential trajectory may reach intermediate energy levels

sooner than the optimal.	 This phenomenon should not be entirely unexpected

since the minimum time trajectory to a given energy level is not the mini-

mum time trajectory to all lower energy levels.	 It is only the minimum =

time trajectory from the initial state to all of the states occurring along

the optimal.

It is well known that the tangential thrust program at each instant =

maximizes the rate of energy increase along a trajectory's .	 Therefore,

it is reasonable to ask how the optimal manages to improve on the tan -

f gential. Since it has been shown that the optimal is tangential to first order,

higher- order terms must produce the difference. In looking at the second

E
f

order solution, we Bind that the difference between the tangential and =__
_ -̂
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optimal velocities may or may not be positive at any given time. However,
the difference between their mean values taken over a revolution-to-go,
from t = tf - (2N+ 2)n/wo to t = tf - 2Nn/wo , is greater than zero, i, e.

2
V2 1opt - V2 [tan = ©V - 2 - > 0.

We conclude then that on the average the velocity is higher along the opti-
mal trajectory. If the tangential velocity is compared to the component of
the optimal velocity in the optimal thrust direction , the mean value of the
optimal velocity component is also found to exceed the mean value of the
tangential velocity, i, e. ,

V1
	 2

V cos $Io t tan 4R > 0P	 owo

Therefore, not only does the optimal velocity exceed the tangential velocity	 =_
on the average, but also its component in the direction of thrust exceeds
the tangential velocity. Recalling that the rate of. energy increase depends
only upon the thrust acceleration and the velocity component along the
thrust vector, we see that the optimal improves on the tangential by main-
taining a higher velocity component in the direction of thrust. The key to
the higher velocity on the optimal is the existence of the "resonance" type
terms in the optimal velocity expression which have been introduced by the
control angle oscillations.

Considering the motion from a physical viewpoint, on the escape
spiral the low thrust engine does work on the spacecraft causing its energy
to increase. The vehicle spirals outward increasing its potential energy
and decreasing its kinetic energy. The rate of energy increase depends
highly upon the vehicle's velocity, i, e. , its kinetic energy, and therefore
decreases as the vehicle moves out. The tangential thrust program maxi-
mizes the rate of• energy increase at each point along the trajectory but
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kinetic energy are reduced. The higher kinetic' energy on the optimal then

gives the vehicle more capability for increasing its energy as it moves out.

The vehicle uses this additional capability in the latter portion of the tra-

jectory to add more energy than it could on a tangential thrust trajectory,

and in this way achieves escape in less time. The oscillation in the opti-

mal control angle is a result of the trade-off between keeping the rate of

energy increase high and the rate of kinetic energy decrease low.

V. Numerical Results

In order to test the accuracy .of the approximate analytic solution, a

comparison was made with an exact optimum energy increase trajectory.

The exact solution was generated by numerically solving the two point

boundary value problem using a secant iteration method. The initial val-

ues of the analytic multipliers were used as first . guesses in the iteration

scheme and seemed to work quite well. The initial values for the state

variables were

r(0) = 6.67817 X 106 meters

V(0) = 7.72580 X 106 meters/sec

y (0) = 2. 19518 X 10 -Z. radians .

These correspond to an initial orbit with the following eccentricity and

energy

eo = 2.0 X 10 -3

E,, '= -2.98440 X 107 newton- meters/ kg

The specified terminal energy was

E f = -Z.86218  X 107 newton- meters /kg

which corresponds to wot f -- 67r in the analytic solution. Since

WO = 1.15687 X 10 -3 , the analytic tf = 1.629353 X 104 seconds. The termi-

nal time found in the numerical solution was t  = 1.629351 X 10 4 seconds.

In Figures 2 and 3 a comparison between the analytical and numerical so-

lutions is made. The state variables are in close agreemnt, as are the
costate variables, with the primary differences appearing as a slight
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mean value offset in the velocity costate, and as a small period discrepancy

in both the velocity and flight path angle costates. 	 The optimal control

angles are also close with only slight differences in period and amplitude.

A solution was also carried out using a terminal energy of

Ef = -2. 58695 X 10 7 newton-meters/ kg

In the analytic solution this energy level occurs at wotf = 20,r , or 
t 
	 =

_ 5.43117 X 104 seconds.	 Numerical results give a final time, tf =

5.43116 X 104 seconds; and again the analytical and numerical state and,

costate variables differed only slightly.	 The determination of the full -

limitations of this approximation are currently under study..

VI.	 Conclusions

As a result of this analysis we reaffirm the well known fact that for

low thrust spiral escape trajectories, tangential thrust is nearly time

optimal, and in fact, is optimal to first order -in the thrust-acceleration

expansion solution.	 In addition, we now conclude that the observed oscil-

lation in the optimal control angle is a second order resonance type phe-

nomenon which reduces the velocity loss and therefore increases the rate

of energy gain along the trajectory.

Y
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Appendix

In the solution of the systems of equations it was found easier to con-
_

sider separate expansions of the control angle functions rather than to use

the multiplier expressions directly.	 The optimal control program is de-
=	 fined by �_

tan	 _ - 4k3 V

By assuming expansions of the form

V = VO +aV I +azVz+...

X3 = a\31 + a2X32 + a3 X33 + ... _

X4 - aX41 + a2X42 + W X43 +

we obtain

tan	 _ q0 + aq	 + a2 Tit + • • • -

where

X41
T10	 =

X31 v0

1
2

X42	 X41 	 +	 3^"'
X31 v0

-
a V0 	 X31

1 X	 X3 A	 ^ 2 • .v.!L	 = .. ^. )l
X43 - X42	 + ^	 ) +X41	 +	 +	

"

(X31 VOV31	 0 V	
V2 

X	 V0	 31 /	 31	 31	 0/0

Aft

Next consider
- 

X	 V
sin 4)-	

4	
-	 cos	 -	 ^'

X4 +X3V	 X4+ a3 V

which can be written as

cos ^ = [1 + tan2+]

ain • + = tan	 cos

"	 Substituting in the expression for tan	 and expanding in a Taylor's series

about a = 0;

cos +	 . a►o + a&, + at ay + .. .

where
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ao	 - (1 + ria)

- ai	 - -no'l i (1 + 110 )0

- ^• z' `Zz	 zaz	 = - I3 ^1o'n^ (1 + nto)	 - zoq2 + 211012) ( 1 + 'no)	 l .

i

s ^

r Using the expansions for tan and cos we obtain

sin = Po +aP1 + azPz+...

where

Po ° 110 (1 4- i1o)y z
_ 3

P1 - ?11 (1 
+^^).	

- 111710( 1 + 1b) "^

Pz = 'nz (1 + 'no)- - 4 (- 3,no^1 i + 1 ^1o'nz) (1 + '10) z + i non, (1 + 'no)

0

= ti
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