447 research outputs found

    Statistical Mechanics of Broadcast Channels Using Low Density Parity Check Codes

    Get PDF
    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple timesharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based timesharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the timesharing limit.Comment: 14 pages, 4 figure

    Statistical Mechanics of Broadcast Channels Using Low Density Parity Check Codes

    Get PDF
    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple timesharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based timesharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the timesharing limit.Comment: 14 pages, 4 figure

    Analysis of common attacks in LDPCC-based public-key cryptosystems

    Get PDF
    We analyze the security and reliability of a recently proposed class of public-key cryptosystems against attacks by unauthorized parties who have acquired partial knowledge of one or more of the private key components and/or of the plaintext. Phase diagrams are presented, showing critical partial knowledge levels required for unauthorized decryptionComment: 14 pages, 6 figure

    Detecting Generalized Synchronization Between Chaotic Signals: A Kernel-based Approach

    Full text link
    A unified framework for analyzing generalized synchronization in coupled chaotic systems from data is proposed. The key of the proposed approach is the use of the kernel methods recently developed in the field of machine learning. Several successful applications are presented, which show the capability of the kernel-based approach for detecting generalized synchronization. It is also shown that the dynamical change of the coupling coefficient between two chaotic systems can be captured by the proposed approach.Comment: 20 pages, 15 figures. massively revised as a full paper; issues on the choice of parameters by cross validation, tests by surrogated data, etc. are added as well as additional examples and figure

    Experimental aspects of SU(5)xU(1) supergravity

    Full text link
    We study various aspects of SU(5)×U(1)SU(5)\times U(1) supergravity as they relate to the experimental verification or falsification of this model. We consider two string-inspired, universal, one-parameter, no-scale soft-supersymmetry-breaking scenarios, driven by the FF-terms of the moduli and dilaton fields. The model is described in terms of the supersymmetry mass scale (\ie, the chargino mass mχ1±m_{\chi^\pm_1}), tanβ\tan\beta, and the top-quark mass. We first determine the combined effect on the parameter space of all presently available direct and indirect experimental constraints, including the LEP lower bounds on sparticle and Higgs-boson masses, the bsγb\to s\gamma rate, the anomalous magnetic moment of the muon, the high-precision electroweak parameters ϵ1,ϵb\epsilon_1,\epsilon_b (which imply m_t\lsim180\GeV), and the muon fluxes in underground detectors (neutrino telescopes). For the still-allowed points in (mχ1±,tanβ)(m_{\chi^\pm_1},\tan\beta) parameter space, we re-evaluate the experimental situation at the Tevatron, LEPII, and HERA. In the 1994 run, the Tevatron could probe chargino masses as high as 100 GeV. At LEPII the parameter space could be explored with probes of different resolutions: Higgs boson searches, selectron searches, and chargino searches. Moreover, for m_t\lsim150\GeV, these Higgs-boson searches could explore all of the allowed parameter space with \sqrt{s}\lsim210\GeV.Comment: latex, 36 pages, 25 figures (not included). Figures are available via anonymous ftp from hplaa02.cern.ch (/pub/lopez) as either 33 ps files (Easpects*.ps, 8.1MB) or one uuencoded file (AllFigures.uu, 3.7MB

    Uncertainties in Coupling Constant Unification

    Full text link
    The status of coupling constant unification in the standard model and its supersymmetric extension are discussed. Uncertainties associated with the input coupling constants, mtm_{t}, threshold corrections at the low and high scales, and possible nonrenormalizable operators are parametrized and estimated. A simple parametrization of a general supersymmetric new particle spectrum is given. It is shown that an effective scale MSUSYM_{SUSY} can be defined, but for a realistic spectrum it may differ considerably from the typical new particle masses. The implications of the lower (higher) values of αs(MZ)\alpha_{s}(M_{Z}) suggested by low-energy (ZZ-pole) experiments are discussed.Comment: LaTex, 51 pages, 6 figures (available upon request), UPR-0513

    Strong disorder fixed points in the two-dimensional random-bond Ising model

    Get PDF
    The random-bond Ising model on the square lattice has several disordered critical points, depending on the probability distribution of the bonds. There are a finite-temperature multicritical point, called Nishimori point, and a zero-temperature fixed point, for both a binary distribution where the coupling constants take the values +/- J and a Gaussian disorder distribution. Inclusion of dilution in the +/- J distribution (J=0 for some bonds) gives rise to another zero-temperature fixed point which can be identified with percolation in the non-frustrated case (J >= 0). We study these fixed points using numerical (transfer matrix) methods. We determine the location, critical exponents, and central charge of the different fixed points and study the spin-spin correlation functions. Our main findings are the following: (1) We confirm that the Nishimori point is universal with respect to the type of disorder, i.e. we obtain the same central charge and critical exponents for the +/- J and Gaussian distributions of disorder. (2) The Nishimori point, the zero-temperature fixed point for the +/- J and Gaussian distributions of disorder, and the percolation point in the diluted case all belong to mutually distinct universality classes. (3) The paramagnetic phase is re-entrant below the Nishimori point, i.e. the zero-temperature fixed points are not located exactly below the Nishimori point, neither for the +/- J distribution, nor for the Gaussian distribution.Comment: final version to appear in JSTAT; minor change

    Probing Supergravity Models with Indirect Experimental Signatures

    Get PDF
    We explore the one-loop electroweak radiative corrections in the context of the traditional minimal SU(5)SU(5) and the string-inspired SU(5)×U(1)SU(5)\times U(1) supergravity models by calculating explicitly vacuum-polarization and vertex-correction contributions to the ϵ1\epsilon_1 and ϵb\epsilon_b parameters. We also include in this analysis the constraint from bsγb\rightarrow s\gamma whose inclusive branching ratio B(bsγ)B(b\rightarrow s\gamma) has been actually measured very recently by CLEO. We find that by combining these three most important indirect experimental signatures and using the most recent experimental values for them, mt170GeVm_t\gtrsim 170 {\rm GeV} is excluded for μ>0\mu>0 in both the minimal SU(5)SU(5) supergravity and the no-scale SU(5)×U(1)SU(5)\times U(1) supergravity. We also find that mt175(185)GeVm_t\gtrsim 175(185) {\rm GeV} is excluded for any sign of μ\mu in the minimal (SU(5)×U(1)SU(5)\times U(1)) supergravity model.Comment: RevTeX 3.0, 16 Pages+4 figures(not included but available as a uuencoded file from [email protected]), SNUTP-94-9
    corecore