4,718 research outputs found

    The Oblique Corrections from Heavy Scalars in Irreducible Representations

    Full text link
    The contributions to SS, TT, and UU from heavy scalars in any irreducible representation of the electroweak gauge group SU(2)L×U(1)YSU(2)_L\times U(1)_Y are obtained. We find that in the case of a heavy scalar doublet there is a slight difference between the SS parameter we have obtained and that in previous works.Comment: 6 pages, 2 axodraw figures; minor changes, references update

    Compensation effect analysis in DIE method for through-casing measuring formation resistivity

    Get PDF
    The measuring technique based on Double-Injection-Electrodes (DIE) and its compensation arithmetic method have been proven to be very useful for eliminating the errors caused by electrode-scale mechanical tolerances in formation resistivity measurement through metal case. In this paper, we found that even minor casing joint or casing corrosion may deteriorate the measurement accuracy. Based on theoretical analysis and self-adaptive goal oriented hp-Finite Element (FE) simulations, the compensation effects of DIE measurement technique were estimated. The calculated results from this measuring method are always close to the real formation resistivity, regardless of whether the metal casing is ideal or not. Meanwhile, large errors occur when recording measurements based on Single-Injection-Electrodes (SIE), since the calculated formation resistivity may provide negative values when casing joint or casing corrosion exists. The Double-Injection-Electrode (DIE) measurement technique is predicted to have good compensation effects in many non-ideal situations with uneven metal casing besides electrode-scale mechanical tolerances.MTM2010 1651

    Recent Advances in Cotton Genomics

    Get PDF

    R-parity violation effect on the top-quark pair production at linear colliders

    Full text link
    We investigate in detail the effects of the R-parity lepton number violation in the minimal supersymmetric standard model (MSSM) on the top-quark pair production via both ee+e^--e^+ and γγ\gamma-\gamma collision modes at the linear colliders. We find that with the present experimental constrained /R\rlap/{R} parameters, the effect from /R\rlap/{R} interactions on the processes e+ettˉe^+e^-\to t\bar{t} and e+eγγttˉe^+e^- \to \gamma\gamma \to t\bar{t} could be significant and may reach -30% and several percent, respectively. Our results show that the /R\rlap/{R} effects are sensitive to the c.m.s. energy and the relevant /R\rlap/{R} parameters. However, they are not sensitive to squark and slepton masses when mq~400GeVm_{\tilde{q}} \geq 400 GeV (or ml~300GeVm_{\tilde{l}} \geq 300 GeV) and are almost independent on the tanβ\tan\betaComment: Accepted by Phys.Rev.

    The generalized second law of thermodynamics in generalized gravity theories

    Full text link
    We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity, (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity, and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f(R)f(R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the gravity is always attractive and the effective Newton constant should be approximate constant satisfying the experimental bounds.Comment: 19 pages, no figure, mistakes corrected, references added, to appear in Class. Quantum Gra

    Analytical study on holographic superconductors in external magnetic field

    Full text link
    We investigate the holographic superconductors immersed in an external magnetic field by using the analytical approach. We obtain the spatially dependent condensate solutions in the presence of the magnetism and find analytically that the upper critical magnetic field satisfies the relation given in the Ginzburg-Landau theory. We observe analytically the reminiscent of the Meissner effect where the magnetic field expels the condensate. Extending to the D-dimensional Gauss-Bonnet AdS black holes, we examine the influence given by the Gauss-Bonnet coupling on the condensation. Different from the positive coupling, we find that the negative Gauss-Bonnet coupling enhances the condensation when the external magnetism is not strong enough.Comment: revised version, to appear in JHE

    Air entrainment through free-surface cusps

    Get PDF
    In many industrial processes, such as pouring a liquid or coating a rotating cylinder, air bubbles are entrapped inside the liquid. We propose a novel mechanism for this phenomenon, based on the instability of cusp singularities that generically form on free surfaces. The air being drawn into the narrow space inside the cusp destroys its stationary shape when the walls of the cusp come too close. Instead, a sheet emanates from the cusp's tip, through which air is entrained. Our analytical theory of this instability is confirmed by experimental observation and quantitative comparison with numerical simulations of the flow equations
    corecore