1,249 research outputs found

    The Central Engines of Gamma-Ray Bursts

    Full text link
    Leading models for the "central engine" of long, soft gamma-ray bursts (GRBs) are briefly reviewed with emphasis on the collapsar model. Growing evidence supports the hypothesis that GRBs are a supernova-like phenomenon occurring in star forming regions, differing from ordinary supernovae in that a large fraction of their energy is concentrated in highly relativistic jets. The possible progenitors and physics of such explosions are discussed and the important role of the interaction of the emerging relativistic jet with the collapsing star is emphasized. This interaction may be responsible for most of the time structure seen in long, soft GRBs. What we have called "GRBs" may actually be a diverse set of phenomena with a key parameter being the angle at which the burst is observed. GRB 980425/SN 1988bw and the recently discovered hard x-ray flashes may be examples of this diversity.Comment: 8 pages, Proc. Woods Hole GRB meeting, Nov 5 - 9 WoodsHole Massachusetts, Ed. Roland Vanderspe

    First Stars III Conference Summary

    Full text link
    The understanding of the formation, life, and death of Population III stars, as well as the impact that these objects had on later generations of structure formation, is one of the foremost issues in modern cosmological research and has been an active area of research during the past several years. We summarize the results presented at "First Stars III," a conference sponsored by Los Alamos National Laboratory, the Kavli Institute for Particle Astrophysics and Cosmology, and the Joint Institute for Nuclear Astrophysics. This conference, the third in a series, took place in July 2007 at the La Fonda Hotel in Santa Fe, New Mexico, U.S.A.Comment: 11 pages, no figures; Conference summary for First Stars III, which was held in Santa Fe, NM on July 15-20, 2007. To appear in "Proceedings of First Stars III," Eds. Brian W. O'Shea, Alexander Heger & Tom Abe

    Evidence from stable isotopes and Be-10 for solar system formation triggered by a low-mass supernova

    Full text link
    About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either do not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived Be-10 can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed.Comment: 32 pages, 3 figures, to appear in Nature Communication

    Conservative Initial Mapping For Multidimensional Simulations of Stellar Explosions

    Full text link
    Mapping one-dimensional stellar profiles onto multidimensional grids as initial conditions for hydrodynamics calculations can lead to numerical artifacts, one of the most severe of which is the violation of conservation laws for physical quantities such as energy and mass. Here we introduce a numerical scheme for mapping one-dimensional spherically-symmetric data onto multidimensional meshes so that these physical quantities are conserved. We validate our scheme by porting a realistic 1D Lagrangian stellar profile to the new multidimensional Eulerian hydro code CASTRO. Our results show that all important features in the profiles are reproduced on the new grid and that conservation laws are enforced at all resolutions after mapping.Comment: 7 pages, 5 figures, Proceeding for Conference on Computational Physics (CCP 2011

    Pulsational Analysis of the Cores of Massive Stars and its Relevance to Pulsar Kicks

    Full text link
    The mechanism responsible for the natal kicks of neutron stars continues to be a challenging problem. Indeed, many mechanisms have been suggested, and one hydrodynamic mechanism may require large initial asymmetries in the cores of supernova progenitor stars. Goldreich, Lai, & Sahrling (1997) suggested that unstable g-modes trapped in the iron (Fe) core by the convective burning layers and excited by the ϵ\epsilon-mechanism may provide the requisite asymmetries. We perform a modal analysis of the last minutes before collapse of published core structures and derive eigenfrequencies and eigenfunctions, including the nonadiabatic effects of growth by nuclear burning and decay by both neutrino and acoustic losses. In general, we find two types of g-modes: inner-core g-modes, which are stabilized by neutrino losses and outer-core g-modes which are trapped near the burning shells and can be unstable. Without exception, we find at least one unstable g-mode for each progenitor in the entire mass range we consider, 11 M_{\sun} to 40 M_{\sun}. More importantly, we find that the timescales for growth and decay are an order of magnitude or more longer than the time until the commencement of core collapse. We conclude that the ϵ\epsilon-mechanism may not have enough time to significantly amplify core g-modes prior to collapse.Comment: 32 pages including 12 color figures and 2 tables, submitted to Ap

    Design and Gait Control of a Rollerblading Robot

    Get PDF
    We present the design and gait generation for an experimental ROLLERBLADER1. The ROLLERBLADER is a robot with a central platform mounted on omnidirectional casters and two 3 degree-of-freedom legs. A passive rollerblading wheel is attached to the end of each leg. The wheels give rise to nonholonomic constraints acting on the robot. The legs can be picked up and placed back on the ground allowing a combination of skating and walking gaits. We present two types of gaits for the robot. In the first gait, we allow the legs to be picked up and placed back on the ground while in the second, the wheels are constrained to stay on the ground at all times. Experimental gait results for a prototype robot are also presented
    corecore