18,459 research outputs found

    Group theoretical study of LOCC-detection of maximally entangled state using hypothesis testing

    Full text link
    In the asymptotic setting, the optimal test for hypotheses testing of the maximally entangled state is derived under several locality conditions for measurements. The optimal test is obtained in several cases with the asymptotic framework as well as the finite-sample framework. In addition, the experimental scheme for the optimal test is presented

    Energy-momentum and angular momentum densities in gauge theories of gravity

    Get PDF
    In the \bar{\mbox{\rm Poincar\'{e}}} gauge theory of gravity, which has been formulated on the basis of a principal fiber bundle over the space-time manifold having the covering group of the proper orthochronous Poincar\'{e} group as the structure group, we examine the tensorial properties of the dynamical energy-momentum density GTkÎĽ{}^{G}{\mathbf T}_{k}{}^{\mu} and the ` ` spin" angular momentum density GSklÎĽ{}^{G}{\mathbf S}_{kl}{}^{\mu} of the gravitational field. They are both space-time vector densities, and transform as tensors under {\em global} SL(2,C)SL(2,C)- transformations. Under {\em local} internal translation, GTkÎĽ{}^{G}{\mathbf T}_{k}{}^{\mu} is invariant, while GSklÎĽ{}^{G}{\mathbf S}_{kl}{}^{\mu} transforms inhomogeneously. The dynamical energy-momentum density MTkÎĽ{}^{M}{\mathbf T}_{k}{}^{\mu} and the ` ` spin" angular momentum density MSklÎĽ{}^{M}{\mathbf S}_{kl}{}^{\mu} of the matter field are also examined, and they are known to be space-time vector densities and to obey tensorial transformation rules under internal \bar{\mbox{\rm Poincar\'{e}}} gauge transformations. The corresponding discussions in extended new general relativity which is obtained as a teleparallel limit of \bar{\mbox{\rm Poincar\'{e}}} gauge theory are also given, and energy-momentum and ` ` spin" angular momentum densities are known to be well behaved. Namely, they are all space-time vector densities, etc. In both theories, integrations of these densities on a space-like surface give the total energy-momentum and {\em total} (={\em spin}+{\em orbital}) angular momentum for asymptotically flat space-time. The tensorial properties of canonical energy-momentum and ` ` extended orbital angular momentum" densities are also examined.Comment: 18 page

    Changepoint Problem in Quantumn Setting

    Full text link
    In the changepoint problem, we determine when the distribution observed has changed to another one. We expand this problem to the quantum case where copies of an unknown pure state are being distributed. We study the fundamental case, which has only two candidates to choose. This problem is equal to identifying a given state with one of the two unknown states when multiple copies of the states are provided. In this paper, we assume that two candidate states are distributed independently and uniformly in the space of the whole pure states. The minimum of the averaged error probability is given and the optimal POVM is defined as to obtain it. Using this POVM, we also compute the error probability which depends on the inner product. These analytical results allow us to calculate the value in the asymptotic case, where this problem approaches to the usual discrimination problem

    Dirac spinor fields in the teleparallel gravity: comment on "Metric-affine approach to teleparallel gravity"

    Full text link
    We show that the coupling of a Dirac spinor field with the gravitational field in the teleparallel equivalent of general relativity is consistent. For an arbitrary SO(3,1) connection there are two possibilities for the coupling of the spinor field with the gravitational field. The problems of consistency raised by Y. N. Obukhov and J. G. Pereira in the paper {\it Metric-affine approach to teleparallel gravity} [gr-qc/0212080] take place only in the framework of one particular coupling. By adopting an alternative coupling the consistency problem disappears.Comment: 8 pages, Latex file, no figures, to appear in the Phys. Rev. D as a Commen

    Statistical analysis on testing of an entangled state based on Poisson distribution framework

    Get PDF
    A hypothesis testing scheme for entanglement has been formulated based on the Poisson distribution framework instead of the POVM framework. Three designs were proposed to test the entangled states in this framework. The designs were evaluated in terms of the asymptotic variance. It has been shown that the optimal time allocation between the coincidence and anti-coincidence measurement bases improves the conventional testing method. The test can be further improved by optimizing the time allocation between the anti-coincidence bases.Comment: This paper is an extended version of the theoretical part of v1 of quant-ph/0603254.quant-ph/0603254 is revised so that it is more familiar to experimentalist

    Asymptotic estimation theory for a finite dimensional pure state model

    Get PDF
    The optimization of measurement for n samples of pure sates are studied. The error of the optimal measurement for n samples is asymptotically compared with the one of the maximum likelihood estimators from n data given by the optimal measurement for one sample.Comment: LaTeX, 23 pages, Doctoral Thesi

    Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation

    Get PDF
    We discuss two quantum analogues of Fisher information, symmetric logarithmic derivative (SLD) Fisher information and Kubo-Mori-Bogoljubov (KMB) Fisher information from a large deviation viewpoint of quantum estimation and prove that the former gives the true bound and the latter gives the bound of consistent superefficient estimators. In another comparison, it is shown that the difference between them is characterized by the change of the order of limits.Comment: LaTeX with iopart.cls, iopart12.clo, iopams.st

    Characteristics of central collision events in Fe-nucleus interactions for 20 - 60 GeV/nucleon

    Get PDF
    A counter emulsion hybrid chamber in Japanese-American Cooperative Emulsion Experiment (JACEE-3) was flown on a balloon at the altitude (5.4 g/sq cm) in 1982 with the objective of probing the heavy nuclear collisions above 20 GeV per nucleon. In the energy region, it is suggested that nucleus-nucleus collisions provide dense collisions complex through compression and secondary particle production. In the lower energy region, an evidence of collective flow has been reported. And also, at higher energy region, it has been argued that nucleus has rather large stopping power. In this paper, the high multiplicity characteristics of Fe nucleus central collisions with energies 20 to 50 GeV/nucleon are presented. This is considered to be relevant to compressibility and collective flow of nuclear matter
    • …
    corecore