In the \bar{\mbox{\rm Poincar\'{e}}} gauge theory of gravity, which has
been formulated on the basis of a principal fiber bundle over the space-time
manifold having the covering group of the proper orthochronous Poincar\'{e}
group as the structure group, we examine the tensorial properties of the
dynamical energy-momentum density GTkμ and the ` `
spin" angular momentum density GSklμ of the
gravitational field. They are both space-time vector densities, and transform
as tensors under {\em global} SL(2,C)- transformations. Under {\em local}
internal translation, GTkμ is invariant, while
GSklμ transforms inhomogeneously. The dynamical
energy-momentum density MTkμ and the ` ` spin"
angular momentum density MSklμ of the matter field
are also examined, and they are known to be space-time vector densities and to
obey tensorial transformation rules under internal \bar{\mbox{\rm
Poincar\'{e}}} gauge transformations. The corresponding discussions in
extended new general relativity which is obtained as a teleparallel limit of
\bar{\mbox{\rm Poincar\'{e}}} gauge theory are also given, and
energy-momentum and ` ` spin" angular momentum densities are known to be well
behaved. Namely, they are all space-time vector densities, etc. In both
theories, integrations of these densities on a space-like surface give the
total energy-momentum and {\em total} (={\em spin}+{\em orbital}) angular
momentum for asymptotically flat space-time. The tensorial properties of
canonical energy-momentum and ` ` extended orbital angular momentum" densities
are also examined.Comment: 18 page