6,555 research outputs found

    Network Synthesis

    Get PDF
    Contains research objectives and reports on three research projects

    Innermost stable circular orbits around relativistic rotating stars

    Get PDF
    We investigate the innermost stable circular orbit (ISCO) of a test particle moving on the equatorial plane around rotating relativistic stars such as neutron stars. First, we derive approximate analytic formulas for the angular velocity and circumferential radius at the ISCO making use of an approximate relativistic solution which is characterized by arbitrary mass, spin, mass quadrupole, current octapole and mass 242^4-pole moments. Then, we show that the analytic formulas are accurate enough by comparing them with numerical results, which are obtained by analyzing the vacuum exterior around numerically computed geometries for rotating stars of polytropic equation of state. We demonstrate that contribution of mass quadrupole moment for determining the angular velocity and, in particular, the circumferential radius at the ISCO around a rapidly rotating star is as important as that of spin.Comment: 12 pages, 2 figures, accepted for publication in Phys. Rev.

    Implementation of NMR quantum computation with para-hydrogen derived high purity quantum states

    Full text link
    We demonstrate the first implementation of a quantum algorithm on a liquid state nuclear magnetic resonance (NMR) quantum computer using almost pure states. This was achieved using a two qubit device where the initial state is an almost pure singlet nuclear spin state of a pair of 1H nuclei arising from a chemical reaction involving para-hydrogen. We have implemented Deutsch's algorithm for distinguishing between constant and balanced functions with a single query.Comment: 7 pages RevTex including 6 figures. Figures 4-6 are low quality to save space. Submitted to Phys Rev

    Dynamics of a Bose-Einstein Condensate in an Anharmonic Trap

    Full text link
    We present a theoretical model to describe the dynamics of Bose-Einstein condensates in anharmonic trapping potentials. To first approximation the center-of-mass motion is separated from the internal condensate dynamics and the problem is reduced to the well known scaling solutions for the Thomas-Fermi radii. We discuss the validity of this approach and analyze the model for an anharmonic waveguide geometry which was recently realized in an experiment \cite{Ott2002c}

    Analytic Controllability of Time-Dependent Quantum Control Systems

    Full text link
    The question of controllability is investigated for a quantum control system in which the Hamiltonian operator components carry explicit time dependence which is not under the control of an external agent. We consider the general situation in which the state moves in an infinite-dimensional Hilbert space, a drift term is present, and the operators driving the state evolution may be unbounded. However, considerations are restricted by the assumption that there exists an analytic domain, dense in the state space, on which solutions of the controlled Schrodinger equation may be expressed globally in exponential form. The issue of controllability then naturally focuses on the ability to steer the quantum state on a finite-dimensional submanifold of the unit sphere in Hilbert space -- and thus on analytic controllability. A relatively straightforward strategy allows the extension of Lie-algebraic conditions for strong analytic controllability derived earlier for the simpler, time-independent system in which the drift Hamiltonian and the interaction Hamiltonia have no intrinsic time dependence. Enlarging the state space by one dimension corresponding to the time variable, we construct an augmented control system that can be treated as time-independent. Methods developed by Kunita can then be implemented to establish controllability conditions for the one-dimension-reduced system defined by the original time-dependent Schrodinger control problem. The applicability of the resulting theorem is illustrated with selected examples.Comment: 13 page

    Geodesics for Efficient Creation and Propagation of Order along Ising Spin Chains

    Full text link
    Experiments in coherent nuclear and electron magnetic resonance, and optical spectroscopy correspond to control of quantum mechanical ensembles, guiding them from initial to final target states by unitary transformations. The control inputs (pulse sequences) that accomplish these unitary transformations should take as little time as possible so as to minimize the effects of relaxation and decoherence and to optimize the sensitivity of the experiments. Here we give efficient syntheses of various unitary transformations on Ising spin chains of arbitrary length. The efficient realization of the unitary transformations presented here is obtained by computing geodesics on a sphere under a special metric. We show that contrary to the conventional belief, it is possible to propagate a spin order along an Ising spin chain with coupling strength J (in units of Hz), significantly faster than 1/(2J) per step. The methods presented here are expected to be useful for immediate and future applications involving control of spin dynamics in coherent spectroscopy and quantum information processing

    Inelastically scattering particles and wealth distribution in an open economy

    Full text link
    Using the analogy with inelastic granular gasses we introduce a model for wealth exchange in society. The dynamics is governed by a kinetic equation, which allows for self-similar solutions. The scaling function has a power-law tail, the exponent being given by a transcendental equation. In the limit of continuous trading, closed form of the wealth distribution is calculated analytically.Comment: 8 pages 5 figure

    Melvin solution with a dilaton potential

    Full text link
    We find new Melvin-like solutions in Einstein-Maxwell-dilaton gravity with a Liouville-type dilaton potential. The properties of the corresponding solution in Freedman-Schwarz gauged supergravity model are extensively studied. We show that this configuration is regular and geodesically complete but do not preserve any supersymmetry. An exact solution describing travelling waves in this Melvin-type background is also presented.Comment: 12 pages, LaTeX, no figure

    Pair of accelerated black holes in an anti-de Sitter background: the AdS C-metric

    Full text link
    The anti-de Sitter C-metric (AdS C-metric) is characterized by a quite interesting new feature when compared with the C-metric in flat or de Sitter backgrounds. Indeed, contrarily to what happens in these two last exact solutions, the AdS C-metric only describes a pair of accelerated black holes if the acceleration parameter satisfies A>1/L, where L is the cosmological length. The two black holes cannot interact gravitationally and their acceleration is totally provided by the pressure exerted by a strut that pushes the black holes apart. Our analysis is based on the study of the causal structure, on the description of the solution in the AdS 4-hyperboloid in a 5D Minkowski embedding spacetime, and on the physics of the strut. We also analyze the cases A=1/L and A<1/L that represent a single accelerated black hole in the AdS background.Comment: 20 pages, 15 figures (RevTeX4). Published version: typo in fig. 5 corrected, references adde

    Generalized Boltzmann Equation for Lattice Gas Automata

    Full text link
    In this paper, for the first time a theory is formulated that predicts velocity and spatial correlations between occupation numbers that occur in lattice gas automata violating semi-detailed balance. Starting from a coupled BBGKY hierarchy for the nn-particle distribution functions, cluster expansion techniques are used to derive approximate kinetic equations. In zeroth approximation the standard nonlinear Boltzmann equation is obtained; the next approximation yields the ring kinetic equation, similar to that for hard sphere systems, describing the time evolution of pair correlations. As a quantitative test we calculate equal time correlation functions in equilibrium for two models that violate semi-detailed balance. One is a model of interacting random walkers on a line, the other one is a two-dimensional fluid type model on a triangular lattice. The numerical predictions agree very well with computer simulations.Comment: 31 pages LaTeX, 12 uuencoded tar-compressed Encapsulated PostScript figures (`psfig' macro), hardcopies available on request, 78kb + 52k
    corecore