837 research outputs found

    Diversity indices applied in desert grassland communities of Otero Mesa, New Mexico

    Get PDF
    To describe plant community (alpha) diversity on rangelands, managers are confronted with a variety of commonly used indices. The choice, performance, and interpretations of these indices are often not clear. Biodiversity indices were computed for a variety of plant communities in a desert grassland of southern New Mexico. Data consisted of reported importance values, range transect data for both grazed and ungrazed pastures, and search-and-find data specifically addressed to plant community diversity. Occurrence of threatened and endangered plants was considered by a weighting procedure. Performance of each diversity index was evaluated by ranking plant communities from low to high and comparing the rankings yielded by the various indices. Data based upon importance or dominance that omit plant species of lesser importance or dominance should not be the basis of comparisons for alpha diversity. Communities described by range transect data ranked differently depending upon the index used. The most practical measure of plant species diversity may be the number of species found by search-and-find procedures

    Critical evaluation of methods for determining total organic phosphorus in tropical soils

    Get PDF
    The determination of total organic phosphorus (TOP) in soils presents several methodological problems, particularly on strongly weathered and tropical soils. We reviewed the application of several methods for TOP determination to soils from different zones of the globe and evaluated the applicability of one ignition and two extraction methods to tropical soils from Brazil and Ghana. Reproducibility (coefficients of variation) was within 6% for the ignition method, and 13% for the extraction methods, due to the simplicity of the former. The two extraction methods produced results similar to each other, while the ignition method generally gave higher TOP contents. Unusually low C to organic P ratios indicate that the ignition method overestimated TOP in several soils. The Bowman extraction method, developed on weakly weathered soils, appeared also suitable for a variety of tropical soils

    A simple inverse method for the interpretation of pumped flowing fluid electrical conductivity logs

    Get PDF
    Pumped flowing fluid electrical conductivity (FFEC) logs, also known as pumped borehole dilution testing, is an experimentally easy‐to‐perform approach to evaluating vertical variations in the hydraulic conductivity of an aquifer. In contrast to the simplicity of the logging equipment, analysis of the data is complex and laborious. Current methods typically require repeated solution of the advection‐dispersion equation (ADE) for describing the flow in the borehole and comparison with the experimental results. In this paper, we describe a direct solution for determining borehole fluid velocity that bypasses the need for complex numerical computation and repetitive optimization. The method rests on the observation that, while solving the ADE for concentration profile in the borehole (as required for modeling and combined methods) is computationally challenging, the solution for flow distribution along the length of the borehole given concentration data is straightforward. The method can accommodate varying borehole diameters, and uses the fact that multiple profiles are taken in the standard logging approach to reduce the impact of noise. Data from both a simulated borehole and from a field test are successfully analyzed. The method is implemented in a spreadsheet, which is available as supporting information material to this paper

    Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution

    Get PDF
    Although specific proteinases play a critical role in the active phase of apoptosis, their substrates are largely unknown. We previously identified poly(ADP-ribose) polymerase (PARP) as an apoptosis-associated substrate for proteinase(s) related to interleukin 1 beta-converting enzyme (ICE). Now we have used a cell-free system to characterize proteinase(s) that cleave the nuclear lamins during apoptosis. Lamin cleavage during apoptosis requires the action of a second ICE-like enyzme, which exhibits kinetics of cleavage and a profile of sensitivity to specific inhibitors that is distinct from the PARP proteinase. Thus, multiple ICE-like enzymes are required for apoptotic events in these cell-free extracts. Inhibition of the lamin proteinase with tosyllysine "chloromethyl ketone" blocks nuclear apoptosis prior to the packaging of condensed chromatin into apoptotic bodies. Under these conditions, the nuclear DNA is fully cleaved to a nucleosomal ladder. Our studies reveal that the lamin proteinase and the fragmentation nuclease function in independent parallel pathways during the final stages of apoptotic execution. Neither pathway alone is sufficient for completion of nuclear apoptosis. Instead, the various activities cooperate to drive the disassembly of the nucleus

    Active flow control systems architectures for civil transport aircraft

    Get PDF
    Copyright @ 2010 American Institute of Aeronautics and AstronauticsThis paper considers the effect of choice of actuator technology and associated power systems architecture on the mass cost and power consumption of implementing active flow control systems on civil transport aircraft. The research method is based on the use of a mass model that includes a mass due to systems hardware and a mass due to the system energy usage. An Airbus A320 aircraft wing is used as a case-study application. The mass model parameters are based on first-principle physical analysis of electric and pneumatic power systems combined with empirical data on system hardware from existing equipment suppliers. Flow control methods include direct fluidic, electromechanical-fluidic, and electrofluidic actuator technologies. The mass cost of electrical power distribution is shown to be considerably less than that for pneumatic systems; however, this advantage is reduced by the requirement for relatively heavy electrical power management and conversion systems. A tradeoff exists between system power efficiency and the system hardware mass required to achieve this efficiency. For short-duration operation the flow control solution is driven toward lighter but less power-efficient systems, whereas for long-duration operation there is benefit in considering heavier but more efficient systems. It is estimated that a practical electromechanical-fluidic system for flow separation control may have a mass up to 40% of the slat mass for a leading-edge application and 5% of flap mass for a trailing-edge application.This work is funded by the Sixth European Union Framework Programme as part of the AVERT project (Contract No. AST5-CT-2006-030914

    INTENSE ELECTRON BEAM DISRUPTION DUE TO ION RELEASE FROM SURFACES

    Get PDF
    Abstract A major concern for the DARHT second axis (2 kA, 18.6 MeV, 2000 ns) is that ions or ionized neutrals released from solid surfaces (e.g., apertures, septums, dumps, and targets) by beam impact can be accelerated and trapped by the beam potential. This positive charge could disrupt the beam. To study this, experiments were performed on the DARHT first axis. The beam, focused to a range of diameters, is transmitted through thin foils made of various materials. The time-dependent beam radial profile is measured downstream of the target. For low current density, the downstream-beam profile is time invariant as expected. At higher current density, the downstream-beam radius changes during the pulse followed by transverse instability

    Periscope Proteins are variable-length regulators of bacterial cell surface interactions

    Get PDF
    Changes at the cell surface enable bacteria to survive in dynamic environments, such as diverse niches of the human host. Here, we reveal “Periscope Proteins” as a widespread mechanism of bacterial surface alteration mediated through protein length variation. Tandem arrays of highly similar folded domains can form an elongated rod-like structure; thus, variation in the number of domains determines how far an N-terminal host ligand binding domain projects from the cell surface. Supported by newly available long-read genome sequencing data, we propose that this class could contain over 50 distinct proteins, including those implicated in host colonization and biofilm formation by human pathogens. In large multidomain proteins, sequence divergence between adjacent domains appears to reduce interdomain misfolding. Periscope Proteins break this “rule,” suggesting that their length variability plays an important role in regulating bacterial interactions with host surfaces, other bacteria, and the immune system
    • 

    corecore