52,547 research outputs found

    Reply to Comment by Galapon on 'Almost-periodic time observables for bound quantum systems'

    Full text link
    In a recent paper [1] (also at http://lanl.arxiv.org/abs/0803.3721), I made several critical remarks on a 'Hermitian time operator' proposed by Galapon [2] (also at http://lanl.arxiv.org/abs/quant-ph/0111061). Galapon has correctly pointed out that remarks pertaining to 'denseness' of the commutator domain are wrong [3]. However, the other remarks still apply, and it is further noted that a given quantum system can be a member of this domain only at a set of times of total measure zero.Comment: 3 page

    Discrete spectra of semirelativistic Hamiltonians from envelope theory

    Get PDF
    We analyze the (discrete) spectrum of the semirelativistic ``spinless-Salpeter'' Hamiltonian H = \beta \sqrt{m^2 + p^2} + V(r), beta > 0, where V(r) represents an attractive, spherically symmetric potential in three dimensions. In order to locate the eigenvalues of H, we extend the ``envelope theory,'' originally formulated only for nonrelativistic Schroedinger operators, to the case of Hamiltonians H involving the relativistic kinetic-energy operator. If V(r) is a convex transformation of the Coulomb potential -1/r and a concave transformation of the harmonic-oscillator potential r^2, both upper and lower bounds on the discrete eigenvalues of H can be constructed, which may all be expressed in the form E = min_{r>0} [ \beta \sqrt{m^2 + P^2/r^2} + V(r) ] for suitable values of the numbers P here provided. At the critical point, the relative growth to the Coulomb potential h(r) = -1/r must be bounded by dV/dh < 2 \beta/\pi.Comment: 20 pages, 2 tables, 4 figure

    Shot noise in diffusive ferromagnetic metals

    Full text link
    We show that shot noise in a diffusive ferromagnetic wire connected by tunnel contacts to two ferromagnetic electrodes can probe the intrinsic density of states and the extrinsic impurity scattering spin-polarization contributions in the polarization of the wire conductivity. The effect is more pronounced when the electrodes are perfectly polarized in opposite directions. While in this case the shot noise has a weak dependence on the impurity scattering polarization, it is strongly affected by the polarization of the density of states. For a finite spin-flip scattering rate the shot noise increases well above the normal state value and can reach the full Poissonian value when the density of states tends to be perfectly polarized. For the parallel configuration we find that the shot noise depends on the relative sign of the intrinsic and the extrinsic polarizations.Comment: 4 pages, 3 figure

    Computer programs for thermodynamic and transport properties of hydrogen

    Get PDF
    Computer program subroutines provide the thermodynamic and transport properties of hydrogen in tabular form. The programs provide 18 combinations of input and output variables. This program is written in FORTRAN 4 for use on the IBM 7044 or CDC 3600 computers

    Gravitating semirelativistic N-boson systems

    Full text link
    Analytic energy bounds for N-boson systems governed by semirelativistic Hamiltonians of the form H=\sum_{i=1}^N(p_i^2 + m^2)^{1/2} - sum_{1=i<j}^N v/r_{ij}, with v>0, are derived by use of Jacobi relative coordinates. For gravity v=c/N, these bounds are substantially tighter than earlier bounds and they are shown to coincide with known results in the nonrelativistic limit.Comment: 7 pages, 2 figures It is now proved that the reduced Hamiltonian is bounded below by the simple N/2 Hamiltonia

    Cogeneration Technology Alternatives Study (CTAS). Volume 5: Cogeneration systems results

    Get PDF
    The use of various advanced energy conversion systems is examined and compared with each other and with current technology systems for savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. The methodology and results of matching the cogeneration energy conversion systems to approximately 50 industrial processes are described. Results include fuel energy saved, levelized annual energy cost saved, return on investment, and operational factors relative to the noncogeneration base cases

    Cogeneration Technology Alternatives Study (CTAS). Volume 2: Analytical approach

    Get PDF
    The use of various advanced energy conversion systems were compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. The ground rules established by NASA and assumptions made by the General Electric Company in performing this cogeneration technology alternatives study are presented. The analytical methodology employed is described in detail and is illustrated with numerical examples together with a description of the computer program used in calculating over 7000 energy conversion system-industrial process applications. For Vol. 1, see 80N24797

    Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information

    Full text link
    A rigorous lower bound is obtained for the average resolution of any estimate of a shift parameter, such as an optical phase shift or a spatial translation. The bound has the asymptotic form k_I/ where G is the generator of the shift (with an arbitrary discrete or continuous spectrum), and hence establishes a universally applicable bound of the same form as the usual Heisenberg limit. The scaling constant k_I depends on prior information about the shift parameter. For example, in phase sensing regimes, where the phase shift is confined to some small interval of length L, the relative resolution \delta\hat{\Phi}/L has the strict lower bound (2\pi e^3)^{-1/2}/, where m is the number of probes, each with generator G_1, and entangling joint measurements are permitted. Generalisations using other resource measures and including noise are briefly discussed. The results rely on the derivation of general entropic uncertainty relations for continuous observables, which are of interest in their own right.Comment: v2:new bound added for 'ignorance respecting estimates', some clarification
    • …
    corecore