666 research outputs found

    A Cantor set of tori with monodromy near a focus-focus singularity

    Full text link
    We write down an asymptotic expression for action coordinates in an integrable Hamiltonian system with a focus-focus equilibrium. From the singularity in the actions we deduce that the Arnol'd determinant grows infinitely large near the pinched torus. Moreover, we prove that it is possible to globally parametrise the Liouville tori by their frequencies. If one perturbs this integrable system, then the KAM tori form a Whitney smooth family: they can be smoothly interpolated by a torus bundle that is diffeomorphic to the bundle of Liouville tori of the unperturbed integrable system. As is well-known, this bundle of Liouville tori is not trivial. Our result implies that the KAM tori have monodromy. In semi-classical quantum mechanics, quantisation rules select sequences of KAM tori that correspond to quantum levels. Hence a global labeling of quantum levels by two quantum numbers is not possible.Comment: 11 pages, 2 figure

    Resonances in a spring-pendulum: algorithms for equivariant singularity theory

    Get PDF
    A spring-pendulum in resonance is a time-independent Hamiltonian model system for formal reduction to one degree of freedom, where some symmetry (reversibility) is maintained. The reduction is handled by equivariant singularity theory with a distinguished parameter, yielding an integrable approximation of the Poincaré map. This makes a concise description of certain bifurcations possible. The computation of reparametrizations from normal form to the actual system is performed by Gröbner basis techniques.

    Hamiltonian Monodromy and Morse Theory

    Get PDF
    We show that Hamiltonian monodromy of an integrable two degrees of freedom system with a global circle action can be computed by applying Morse theory to the Hamiltonian of the system. Our proof is based on Takens's index theorem, which specifies how the energy-h Chern number changes when h passes a non-degenerate critical value, and a choice of admissible cycles in Fomenko-Zieschang theory. Connections of our result to some of the existing approaches to monodromy are discussed

    Analysis of a slow-fast system near a cusp singularity

    Get PDF
    This paper studies a slow-fast system whose principal characteristic is that the slow manifold is given by the critical set of the cusp catastrophe. Our analysis consists of two main parts: first, we recall a formal normal form suitable for systems as the one studied here; afterwards, taking advantage of this normal form, we investigate the transition near the cusp singularity by means of the blow up technique. Our contribution relies heavily in the usage of normal form theory, allowing us to refine previous results

    Mapping the Spread of Malaria Drug Resistance

    Get PDF
    Tim Anderson discusses a new study of molecular variation in alleles at the dihydropteroate synthase locus, which underlies resistance to sulfadoxine, in over 5,000 parasites from 50 locations

    Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach

    Get PDF
    We perform a bifurcation analysis of normal–internal resonances in parametrised families of quasi–periodically forced Hamiltonian oscillators, for small forcing. The unforced system is a one degree of freedom oscillator, called the ‘backbone’ system; forced, the system is a skew–product flow with a quasi–periodic driving with basic frequencies. The dynamics of the forced system are simplified by averaging over the orbits of a linearisation of the unforced system. The averaged system turns out to have the same structure as in the well–known case of periodic forcing ; for a real analytic system, the non–integrable part can even be made exponentially small in the forcing strength. We investigate the persistence and the bifurcations of quasi–periodic –dimensional tori in the averaged system, filling normal–internal resonance ‘gaps’ that had been excluded in previous analyses. However, these gaps cannot completely be filled up: secondary resonance gaps appear, to which the averaging analysis can be applied again. This phenomenon of ‘gaps within gaps’ makes the quasi–periodic case more complicated than the periodic case
    • 

    corecore