652 research outputs found

    Compact solid-state laser source for 1S-2S spectroscopy in atomic hydrogen

    Full text link
    We demonstrate a novel compact solid-state laser source for high-resolution two-photon spectroscopy of the 1S−2S1S-2S transition in atomic hydrogen. The source emits up to 20 mW at 243 nm and consists of a 972 nm diode laser, a tapered amplifier, and two doubling stages. The diode laser is actively stabilized to a high-finesse cavity. We compare the new source to the stable 486 nm dye laser used in previous experiments and record 1S-2S spectra using both systems. With the solid-state laser system we demonstrate a resolution of the hydrogen spectrometer of 6 \times 10^{11} which is promising for a number of high-precision measurements in hydrogen-like systems

    Applications of Integrated Magnetic Microtraps

    Get PDF
    Lithographically fabricated circuit patterns can provide magnetic guides and microtraps for cold neutral atoms. By combining several such structures on the same ceramic substrate, we have realized the first ``atom chips'' that permit complex manipulations of ultracold trapped atoms or de Broglie wavepackets. We show how to design magnetic potentials from simple conductor patterns and we describe an efficient trap loading procedure in detail. Applying the design guide, we describe some new microtrap potentials, including a trap which reaches the Lamb-Dicke regime for rubidium atoms in all three dimensions, and a rotatable Ioffe-Pritchard trap, which we also demonstrate experimentally. Finally, we demonstrate a device allowing independent linear positioning of two atomic clouds which are very tightly confined laterally. This device is well suited for the study of one-dimensional collisions.Comment: 10 pages, 17 figure

    Adaptive dual-comb spectroscopy in the green region

    Full text link
    Dual-comb spectroscopy is extended to the visible spectral range with a set-up based on two frequency-doubled femtosecond ytterbium-doped fiber lasers. The dense rovibronic spectrum of iodine around 19240 cm-1 is recorded within 12 ms at Doppler-limited resolution with a simple scheme that only uses free-running femtosecond lasers

    Photothermal effects in ultra-precisely stabilized tunable microcavities

    Full text link
    We study the mechanical stability of a tunable high-finesse microcavity under ambient conditions and investigate light-induced effects that can both suppress and excite mechanical fluctuations. As an enabling step, we demonstrate the ultra-precise electronic stabilization of a microcavity. We then show that photothermal mirror expansion can provide high-bandwidth feedback and improve cavity stability by almost two orders of magnitude. At high intracavity power, we observe self-oscillations of mechanical resonances of the cavity. We explain the observations by a dynamic photothermal instability, leading to parametric driving of mechanical motion. For an optimized combination of electronic and photothermal stabilization, we achieve a feedback bandwidth of 500 500\,kHz and a noise level of 1.1×10−13 1.1 \times 10^{-13}\,m rms

    Holographic recording of laser-induced plasma

    Get PDF
    We report on a holographic probing technique that allows for measurement of free-electron distribution with fine spatial detail. Plasma is generated by focusing a femtosecond pulse in air. We also demonstrate the capability of the holographic technique of capturing the time evolution of the plasma-generation process
    • 

    corecore