2,388 research outputs found

    Mourning the loss of "self as father": a longitudinal study of fatherhood among the druze

    Get PDF
    Journal ArticleIT is within the context of the parent-child relationship - through the processes of attachment, loss, separation and individuation - that we grow and develop interpersonally and intrapsychically (Bowlby 1969, 1980; Mahler et al. 1975; Pollock, 1989). Most developmentalists agree that changes in the parent-child relationship continue to influence both parents and children throughout the life cycle (Cohen et al. 1984; Colarusso and Nemiroff 1982)

    Using Classical Probability To Guarantee Properties of Infinite Quantum Sequences

    Full text link
    We consider the product of infinitely many copies of a spin-121\over 2 system. We construct projection operators on the corresponding nonseparable Hilbert space which measure whether the outcome of an infinite sequence of σx\sigma^x measurements has any specified property. In many cases, product states are eigenstates of the projections, and therefore the result of measuring the property is determined. Thus we obtain a nonprobabilistic quantum analogue to the law of large numbers, the randomness property, and all other familiar almost-sure theorems of classical probability.Comment: 7 pages in LaTe

    Improved Error-Scaling for Adiabatic Quantum State Transfer

    Full text link
    We present a technique that dramatically improves the accuracy of adiabatic state transfer for a broad class of realistic Hamiltonians. For some systems, the total error scaling can be quadratically reduced at a fixed maximum transfer rate. These improvements rely only on the judicious choice of the total evolution time. Our technique is error-robust, and hence applicable to existing experiments utilizing adiabatic passage. We give two examples as proofs-of-principle, showing quadratic error reductions for an adiabatic search algorithm and a tunable two-qubit quantum logic gate.Comment: 10 Pages, 4 figures. Comments are welcome. Version substantially revised to generalize results to cases where several derivatives of the Hamiltonian are zero on the boundar

    Adiabatic Quantum Computing with Phase Modulated Laser Pulses

    Full text link
    Implementation of quantum logical gates for multilevel system is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language.Comment: 19 pages, 6 figures, submitted to JOP

    SpF: Enabling Petascale Performance for Pseudospectral Dynamo Models

    Get PDF
    Pseudospectral (PS) methods possess a number of characteristics (e.g., efficiency, accuracy, natural boundary conditions) that are extremely desirable for dynamo models. Unfortunately, dynamo models based upon PS methods face a number of daunting challenges, which include exposing additional parallelism, leveraging hardware accelerators, exploiting hybrid parallelism, and improving the scalability of global memory transposes. Although these issues are a concern for most models, solutions for PS methods tend to require far more pervasive changes to underlying data and control structures. Further, improvements in performance in one model are difficult to transfer to other models, resulting in significant duplication of effort across the research community.We have developed an extensible software framework for pseudospectral methods called SpF that is intended to enable extreme scalability and optimal performance. High-level abstractions provided by SpF unburden applications of the responsibility of managing domain decomposition and load balance while reducing the changes in code required to adapt to new computing architectures. The key design concept in SpF is that each phase of the numerical calculation is partitioned into disjoint numerical kernels that can be performed entirely in-processor. The granularity of domain-decomposition provided by SpF is only constrained by the data-locality requirements of these kernels. SpF builds on top of optimized vendor libraries for common numerical operations such as transforms, matrix solvers, etc., but can also be configured to use open source alternatives for portability. SpF includes several alternative schemes for global data redistribution and is expected to serve as an ideal testbed for further research into optimal approaches for different network architectures.In this presentation, we will describe the basic architecture of SpF as well as preliminary performance data and experience with adapting legacy dynamo codes. We will conclude with a discussion of planned extensions to SpF that will provide pseudospectral applications with additional flexibility with regard to time integration, linear solvers, and discretization in the radial direction

    Robustness of adiabatic passage trough a quantum phase transition

    Get PDF
    We analyze the crossing of a quantum critical point based on exact results for the transverse XY model. In dependence of the change rate of the driving field, the evolution of the ground state is studied while the transverse magnetic field is tuned through the critical point with a linear ramping. The excitation probability is obtained exactly and is compared to previous studies and to the Landau-Zener formula, a long time solution for non-adiabatic transitions in two-level systems. The exact time dependence of the excitations density in the system allows to identify the adiabatic and diabatic regions during the sweep and to study the mesoscopic fluctuations of the excitations. The effect of white noise is investigated, where the critical point transmutes into a non-hermitian ``degenerate region''. Besides an overall increase of the excitations during and at the end of the sweep, the most destructive effect of the noise is the decay of the state purity that is enhanced by the passage through the degenerate region.Comment: 16 pages, 15 figure

    Yes, one can obtain better quality structures from routine X-ray data collection

    Get PDF
    Single-crystal X-ray diffraction structural results for benzidine dihydrochloride, hydrated and protonated N,N,N,N-peri(dimethylamino)naphthalene chloride, triptycene, dichlorodimethyltriptycene and decamethylferrocene have been analysed. A critical discussion of the dependence of structural and thermal parameters on resolution for these compounds is presented. Results of refinements against X-ray data, cut off to different resolutions from the high-resolution data files, are compared to structural models derived from neutron diffraction experiments. The Independent Atom Model (IAM) and the Transferable Aspherical Atom Model (TAAM) are tested. The average differences between the X-ray and neutron structural parameters (with the exception of valence angles defined by H atoms) decrease with the increasing 2θmax angle. The scale of differences between X-ray and neutron geometrical parameters can be significantly reduced when data are collected to the higher, than commonly used, 2θmax diffraction angles (for Mo Kα 2θmax > 65°). The final structural and thermal parameters obtained for the studied compounds using TAAM refinement are in better agreement with the neutron values than the IAM results for all resolutions and all compounds. By using TAAM, it is still possible to obtain accurate results even from low-resolution X-ray data. This is particularly important as TAAM is easy to apply and can routinely be used to improve the quality of structural investigations [Dominiak (2015). LSDB from UBDB. University of Buffalo, USA]. We can recommend that, in order to obtain more adequate (more accurate and precise) structural and displacement parameters during the IAM model refinement, data should be collected up to the larger diffraction angles, at least, for Mo Kα radiation to 2θmax = 65° (sin θmax/λ < 0.75 Å−1). The TAAM approach is a very good option to obtain more adequate results even using data collected to the lower 2θmax angles. Also the results of translation–libration–screw (TLS) analysis and vibrational entropy values are more reliable for 2θmax > 65°

    Quantum Adiabatic Algorithms, Small Gaps, and Different Paths

    Get PDF
    We construct a set of instances of 3SAT which are not solved efficiently using the simplestquantum adiabatic algorithm. These instances are obtained by picking randomclauses all consistent with two disparate planted solutions and then penalizing one ofthem with a single additional clause. We argue that by randomly modifying the beginningHamiltonian, one obtains (with substantial probability) an adiabatic path thatremoves this difficulty. This suggests that the quantum adiabatic algorithm should ingeneral be run on each instance with many different random paths leading to the problemHamiltonian. We do not know whether this trick will help for a random instance of3SAT (as opposed to an instance from the particular set we consider), especially if theinstance has an exponential number of disparate assignments that violate few clauses.We use a continuous imaginary time Quantum Monte Carlo algorithm in a novel way tonumerically investigate the ground state as well as the first excited state of our system.Our arguments are supplemented by Quantum Monte Carlo data from simulations withup to 150 spins.United States. Dept. of Energy (Cooperative Research Agreement DE-FG02-94ER40818)W. M. Keck Foundation Center for Extreme Quantum Information TheoryU.S. Army Research Laboratory (Grant W911NF-09-1-0438)National Science Foundation (U.S.) (Grant CCF-0829421

    Intra-Ethnic Diversity in Hispanic Child Mortality, 1890-1910

    Get PDF
    The recent demography of the Hispanic population of the United States has received considerable attention, but historical perspective is more elusive partly due to data limitations. A nationally representative sample of the Hispanic population of the United States, based on the manuscripts of the 1910 census, now exists that includes 71,500 Hispanic-origin persons plus another 24,000 of their non-Hispanic neighbors. We estimate childhood mortality for 1890 to 1910, using indirect demographic methods of estimation and find infant and child mortality in the Hispanic population that was higher than for the non-Hispanic whites but slightly lower than for nonwhite, non-Hispanics (mostly African Americans). Hispanic rural, farm populations in California, Texas, and Arizona did the best, though still experiencing high mortality. The usual advantage of rural residence at the turn of the century holds outside of New Mexico and Florida.
    • …
    corecore