9 research outputs found

    Relative luminosity measurement of the LHC with the ATLAS forward calorimeter

    Full text link
    In this paper it is shown that a measurement of the relative luminosity changes at the LHC may be obtained by analysing the currents drawn from the high voltage power supplies of the electromagnetic section of the forward calorimeter of the ATLAS detector. The method was verified with a reproduction of a small section of the ATLAS forward calorimeter using proton beams of known beam energies and variable intensities at the U-70 accelerator at IHEP in Protvino, Russia. The experimental setup and the data taking during a test beam run in April 2008 are described in detail. A comparison of the measured high voltage currents with reference measurements from beam intensity monitors shows a linear dependence on the beam intensity. The non-linearities are measured to be less than 0.5 % combining statistical and systematic uncertainties.Comment: 16 page

    Geochemistry of european bottled water

    No full text
    In Europe, ca. 1900 "mineral water" brands are officially registered and bottled for drinking. Bottled water is groundwater and is rapidly developing into the main supply of drinking water for the general population of large parts of Europe. This book is the first state of the art overview of the chemistry of groundwaters from 40 European countries from Portugal to Russia, measured on 1785 bottled water samples from 1247 wells representing 884 locations plus additional 500 tap water samples acquired in 2008 by the network of EuroGeoSurveys experts all across Europe. In contrast to previously available data sets, all chemical data were measured in a single laboratory, under strict quality control with high internal and external reproducibility, affording a single high quality, internally consistent dataset. More than 70 parameters were determined on every sample using state of the art analytical techniques with ultra low detection limits (ICPMS, ICPOES, IC) at a single hydrochemical lab facility. Because of the wide geographical distribution of the water sources, the bottled mineral, drinking and tap waters characterized herein may be used for obtaining a first estimate of "groundwater geochemistry" at the scale of the European Continent, a dataset previously unavailable in this completeness, quality and coverage. This new data set allows, for the first time, to present a comprehensive internally consistent, overview of the natural distribution and variation of the determined chemical elements and additional state parameters of groundwater at the European scale. Most elements show a very wide range \u2013 usually 3 to 4 but up to 7 orders of magnitude \u2013 of natural variation of their concentration. Data are interpreted in terms of their origin, considering hydrochemical parameters, such as the influence of soil, vegetation cover and mixing with deep waters, as well as other factors (bottling effects, leaching from bottles). Chapters are devoted to comparing the bottled water data with those of European tap water and previously published datasets and discussing the implications of water chemistry for health. The authors also provide an overview of the legal framework, that any bottled water sold in the European Union must comply with. It includes a comprehensive compilation of current drinking water action levels in European countries, limiting values of the European Drinking/Mineral/Natural Mineral Water directives (1998/83/EC, 2003/40/EC, 2009/54/EC) and legislation in effect in 26 individual European Countries, and for comparison those of the FAO and in effect in the US (EPA, maximum contaminant level)

    ATLAS

    No full text
    % ATLAS \\ \\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and Bs0 B ^0 _{s} -mixing. \\ \\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial field, electromagnetic and hadronic calorimeters outside the solenoid and in the forward regions, and barrel and end-cap air-core-toroid muon spectrometers. The precision measurements for photons, electrons, muons and hadrons, and identification of photons, electrons, muons, τ\tau-leptons and b-quark jets are performed over η| \eta | < 2.5. The complete hadronic energy measurement extends over η| \eta | < 4.7. \\ \\The inner tracking detector consists of straw drift tubes interleaved with transition radiators for robust pattern recognition and electron identification, and several layers of semiconductor strip and pixel detectors providing high-precision space points. \\ \\The e.m. calorimeter is a lead-Liquid Argon sampling calorimeter with an integrated preshower detector and a presampler layer immediately behind the cryostat wall for energy recovery. The end-cap hadronic calorimeters also use Liquid Argon technology, with copper absorber plates. The end-cap cryostats house the e.m., hadronic and forward calorimeters (tungsten-Liquid Argon sampling). The barrel hadronic calorimeter is an iron-scintillating tile sampling calorimeter with longitudinal tile geometry. \\ \\Air-core toroids are used for the muon spectrometer. Eight superconducting coils with warm voussoirs are used in the barrel region complemented with superconducting end-cap toroids in the forward regions. The toroids will be instrumented with Monitored Drift Tubes (Cathode Strip Chambers at large rapidity where there are high radiation levels). The muon trigger and second coordinate measurement for muon tracks are provide

    Organolead Compounds

    No full text
    corecore