279 research outputs found

    Superconductivity in the attractive Hubbard model: functional renormalization group analysis

    Full text link
    We present a functional renormalization group analysis of superconductivity in the ground state of the attractive Hubbard model on a square lattice. Spontaneous symmetry breaking is treated in a purely fermionic setting via anomalous propagators and anomalous effective interactions. In addition to the anomalous interactions arising already in the reduced BCS model, effective interactions with three incoming legs and one outgoing leg (and vice versa) occur. We accomplish their integration into the usual diagrammatic formalism by introducing a Nambu matrix for the effective interactions. From a random-phase approximation generalized through use of this matrix we conclude that the impact of the 3+1 effective interactions is limited, especially considering the effective interactions important for the determination of the order parameter. The exact hierarchy of flow equations for one-particle irreducible vertex functions is truncated on the two-particle level, with higher-order self-energy corrections included in a scheme proposed by Katanin. Using a parametrization of effective interactions by patches in momentum space, the flow equations can be integrated numerically to the lowest scales without encountering divergences. Momentum-shell as well as interaction-flow cutoff functions are used, including a small external field or a large external field and a counterterm, respectively. Both approaches produce momentum-resolved order parameter values directly from the microscopic model. The size of the superconducting gap is in reasonable agreement with expectations from other studies.Comment: 22 pages, 16 figures, references added, some changes in the introductio

    A Droplet within the Spherical Model

    Full text link
    Various substances in the liquid state tend to form droplets. In this paper the shape of such droplets is investigated within the spherical model of a lattice gas. We show that in this case the droplet boundary is always diffusive, as opposed to sharp, and find the corresponding density profiles (droplet shapes). Translation-invariant versions of the spherical model do not fix the spatial location of the droplet, hence lead to mixed phases. To obtain pure macroscopic states (which describe localized droplets) we use generalized quasi-averaging. Conventional quasi-averaging deforms droplets and, hence, can not be used for this purpose. On the contrary, application of the generalized method of quasi-averages yields droplet shapes which do not depend on the magnitude of the applied external field.Comment: 22 pages, 2 figure

    Theoretical aspects of the CEBAF 89-009 experiment on inclusive scattering of 4.05 GeV electrons from nuclei

    Get PDF
    We compare recent CEBAF data on inclusive electron scattering on nuclei with predictions, based on a relation between structure functions (SF) of a nucleus, a nucleon and a nucleus of point-nucleons. The latter contains nuclear dynamics, e.g. binary collision contributions in addition to the asymptotic limit. The agreement with the data is good, except in low-intensity regions. Computed ternary collsion contributions appear too small for an explanation. We perform scaling analyses in Gurvitz's scaling variable and found that for yG0y_G\gtrless 0, ratios of scaling functions for pairs of nuclei differ by less than 15-20% from 1. Scaling functions for 00 are, for increasing Q2Q^2, shown to approach a plateau from above. We observe only weak Q2Q^2-dependence in FSI, which in the relevant kinematic region is ascribed to the diffractive nature of the NN amplitudes appearing in FSI. This renders it difficult to separate asymptotic from FSI parts and seriously hampers the extraction of n(p)n(p) from scaling analyses in a model-independnent fashion.Comment: 11 p. Latex file, 2 ps fig

    Bose-Einstein condensation in the presence of a uniform field and a point-like impurity

    Full text link
    The behavior of an ideal DD-dimensional boson gas in the presence of a uniform gravitational field is analyzed. It is explicitly shown that, contrarily to an old standing folklore, the three-dimensional gas does not undergo Bose-Einstein condensation at finite temperature. On the other hand, Bose-Einstein condensation occurs at T0T\neq 0 for D=1,2,3D=1,2,3 if there is a point-like impurity at the bottom of the vessel containing the gas.Comment: 14 pages, REVTEX. Revised version, accepted for publication in Phys. Rev.

    How to turn the Fast-Track into a Fast-Track: Process integration for evaluation of the quality of Digital Health Applications (DiGAs) on the example of the German Fast-Track Process

    Get PDF
    In this paper, we address the research question of which integration points in the \textit{German Fast-Track process} are particularly well suited for the integration of evaluation platforms for digital health applications. For this purpose, possible integration points are first identified and then analyzed with the help of a utility analysis with regard to the posed research question. Finally, a recommendation for action is made based on the results of the conducted utility analysis

    Confinement and scaling in deep inelastic scattering

    Full text link
    We show that parton confinement in the final state generates large 1/Q21/Q^2 corrections to Bjorken scaling, thus leaving less room for the logarithmic corrections. In particular, the xx-scaling violations at large xx are entirely described in terms of power corrections. For treatment of these non-perturbative effects, we derive a new expansion in powers of 1/Q21/Q^2 for the structure function that is free of infra-red singularities and which reduces corrections to the leading term. The leading term represents scattering from an off-mass-shell parton, which keeps the same virtual mass in the final state. It is found that this quasi-free term is a function of a new variable xˉ\bar x, which coincides with the Bjorken variable xx for Q2Q^2\to\infty. The two variables are very different, however, at finite Q2Q^2. In particular, the variable xˉ\bar x depends on the invariant mass of the spectator particles. Analysis of the data at large xx shows excellent scaling in the variable xˉ\bar x, and determines the value of the diquark mass to be close to zero. xˉ\bar x-scaling allows us to extract the structure function near the elastic threshold. It is found to behave as F2(1x)3.7F_2\sim (1-x)^{3.7}. Predictions for the structure functions based on xˉ\bar x-scaling are made.Comment: Discussion of target mass corrections is added. Accepted for publication in Phys. Rev.

    Numerical study of the spherically-symmetric Gross-Pitaevskii equation in two space dimensions

    Full text link
    We present a numerical study of the time-dependent and time-independent Gross-Pitaevskii (GP) equation in two space dimensions, which describes the Bose-Einstein condensate of trapped bosons at ultralow temperature with both attractive and repulsive interatomic interactions. Both time-dependent and time-independent GP equations are used to study the stationary problems. In addition the time-dependent approach is used to study some evolution problems of the condensate. Specifically, we study the evolution problem where the trap energy is suddenly changed in a stable preformed condensate. In this case the system oscillates with increasing amplitude and does not remain limited between two stable configurations. Good convergence is obtained in all cases studied.Comment: 9 latex pages, 7 postscript figures, To appear in Phys. Rev.

    Inclusive quasi-elastic electron-nucleus scattering

    Full text link
    This article presents a review of the field of inclusive quasi-elastic electron-nucleus scattering. It discusses the approach used to measure the data and includes a compilation of data available in numerical form. The theoretical approaches used to interpret the data are presented. A number of results obtained from the comparison between experiment and calculation are then reviewed. The analogies and differences to other fields of physics exploiting quasi-elastic scattering from composite systems are pointed out.Comment: Accepted for publication in Reviews of Modern Physic
    corecore