215 research outputs found

    Differential Effects of Viewpoint on Object-Driven Activation in Dorsal and Ventral Streams

    Get PDF
    AbstractUsing fMRI, we showed that an area in the ventral temporo-occipital cortex (area vTO), which is part of the human homolog of the ventral stream of visual processing, exhibited priming for both identical and depth-rotated images of objects. This pattern of activation in area vTO corresponded to performance in a behavioral matching task. An area in the caudal part of the intraparietal sulcus (area cIPS) also showed priming, but only with identical images of objects. This dorsal-stream area treated rotated images as new objects. The difference in the pattern of priming-related activation in the two areas may reflect the respective roles of the ventral and dorsal streams in object recognition and object-directed action

    Effects of phase regression on high-resolution functional MRI of the primary visual cortex

    Get PDF
    High-resolution functional MRI studies have become a powerful tool to non-invasively probe the sub-millimeter functional organization of the human cortex. Advances in MR hardware, imaging techniques and sophisticated post-processing methods have allowed high resolution fMRI to be used in both the clinical and academic neurosciences. However, consensus within the community regarding the use of gradient echo (GE) or spin echo (SE) based acquisition remains largely divided. On one hand, GE provides a high temporal signal-to-noise ratio (tSNR) technique sensitive to both the macro- and micro-vascular signal while SE based methods are more specific to microvasculature but suffer from lower tSNR and specific absorption rate limitations, especially at high field and with short repetition times. Fortunately, the phase of the GE-EPI signal is sensitive to vessel size and this provides a potential avenue to reduce the macrovascular weighting of the signal (phase regression, Menon 2002). In order to determine the efficacy of this technique at high-resolution, phase regression was applied to GE-EPI timeseries and compared to SE-EPI to determine if GE-EPI\u27s specificity to the microvascular compartment improved. To do this, functional data was collected from seven subjects on a neuro-optimized 7 T system at 800 μm isotropic resolution with both GE-EPI and SE-EPI while observing an 8 Hz contrast reversing checkerboard. Phase data from the GE-EPI was used to create a microvasculature-weighted time series (GE-EPI-PR). Anatomical imaging (MP2RAGE) was also collected to allow for surface segmentation so that the functional results could be projected onto a surface. A multi-echo gradient echo sequence was collected and used to identify venous vasculature. The GE-EPI-PR surface activation maps showed a high qualitative similarity with SE-EPI and also produced laminar activity profiles similar to SE-EPI. When the GE-EPI and GE-EPI-PR distributions were compared to SE-EPI it was shown that GE-EPI-PR had similar distribution characteristics to SE-EPI (p \u3c 0.05) across the top 60% of cortex. Furthermore, it was shown that GE-EPI-PR has a higher contrast-to-noise ratio (0.5 ± 0.2, mean ± std. dev. across layers) than SE-EPI (0.27 ± 0.07) demonstrating the technique has higher sensitivity than SE-EPI. Taken together this evidence suggests phase regression is a useful method in low SNR studies such as high-resolution fMRI

    An in vivo investigation of the initiation and progression of subchondral cysts in a rodent model of secondary osteoarthritis

    Get PDF
    Introduction: Subchondral bone cysts (SBC) have been identified in patients with knee osteoarthritis (OA) as a cause of greater pain, loss of cartilage and increased chance of joint replacement surgery. Few studies monitor SBC longitudinally, and clinical research using three-dimensional imaging techniques, such as magnetic resonance imaging (MRI), is limited to retrospective analyses as SBC are identified within an OA patient cohort. The purpose of this study was to use dual-modality, preclinical imaging to monitor the initiation and progression of SBC occurring within an established rodent model of knee OA.Methods: Eight rodents underwent anterior cruciate ligament transection and partial medial meniscectomy (ACLX) of the right knee. In vivo 9.4 T MRI and micro-computed tomography (micro-CT) scans were performed consecutively prior to ACLX and 4, 8, and 12 weeks post-ACLX. Resultant images were co-registered using anatomical landmarks, which allowed for precise tracking of SBC size and composition throughout the study. The diameter of the SBC was measured, and the volumetric bone mineral density (vBMD) was calculated within the bone adjacent to SBC. At 12 weeks, the ACLX and contralateral knees were processed for histological analysis, immunohistochemistry, and Osteoarthritis Research Society International (OARSI) pathological scoring.Results: At 4 weeks post-ACLX, 75% of the rodent knees had at least 1 cyst that formed in the medial tibial plateau; by 12 weeks all ACLX knees contained SBC. Imaging data revealed that the SBC originate in the presence of a subchondral bone plate breach, with evolving composition over time. The diameter of the SBC increased significantly over time (P = 0.0033) and the vBMD significantly decreased at 8 weeks post-ACLX (P = 0.033). Histological analysis demonstrated positive staining for bone resorption and formation surrounding the SBC, which were consistently located beneath the joint surface with the greatest cartilage damage. Trabecular bone adjacent the SBC lacked viable osteocytes and, combined with bone marrow changes, indicated osteonecrosis.Conclusions: This study provides insight into the mechanisms leading to SBC formation in knee OA. The expansion of these lesions is due to stress-induced bone resorption from the incurred mechanical instability. Therefore, we suggest these lesions can be more accurately described as a form of OA-induced osteonecrosis, rather than \u27subchondral cysts\u27. © 2012 McErlain et al.; licensee BioMed Central Ltd

    An in vivo investigation of the initiation and progression of subchondral cysts in a rodent model of secondary osteoarthritis

    Get PDF
    Introduction: Subchondral bone cysts (SBC) have been identified in patients with knee osteoarthritis (OA) as a cause of greater pain, loss of cartilage and increased chance of joint replacement surgery. Few studies monitor SBC longitudinally, and clinical research using three-dimensional imaging techniques, such as magnetic resonance imaging (MRI), is limited to retrospective analyses as SBC are identified within an OA patient cohort. The purpose of this study was to use dual-modality, preclinical imaging to monitor the initiation and progression of SBC occurring within an established rodent model of knee OA.Methods: Eight rodents underwent anterior cruciate ligament transection and partial medial meniscectomy (ACLX) of the right knee. In vivo 9.4 T MRI and micro-computed tomography (micro-CT) scans were performed consecutively prior to ACLX and 4, 8, and 12 weeks post-ACLX. Resultant images were co-registered using anatomical landmarks, which allowed for precise tracking of SBC size and composition throughout the study. The diameter of the SBC was measured, and the volumetric bone mineral density (vBMD) was calculated within the bone adjacent to SBC. At 12 weeks, the ACLX and contralateral knees were processed for histological analysis, immunohistochemistry, and Osteoarthritis Research Society International (OARSI) pathological scoring.Results: At 4 weeks post-ACLX, 75% of the rodent knees had at least 1 cyst that formed in the medial tibial plateau; by 12 weeks all ACLX knees contained SBC. Imaging data revealed that the SBC originate in the presence of a subchondral bone plate breach, with evolving composition over time. The diameter of the SBC increased significantly over time (P = 0.0033) and the vBMD significantly decreased at 8 weeks post-ACLX (P = 0.033). Histological analysis demonstrated positive staining for bone resorption and formation surrounding the SBC, which were consistently located beneath the joint surface with the greatest cartilage damage. Trabecular bone adjacent the SBC lacked viable osteocytes and, combined with bone marrow changes, indicated osteonecrosis.Conclusions: This study provides insight into the mechanisms leading to SBC formation in knee OA. The expansion of these lesions is due to stress-induced bone resorption from the incurred mechanical instability. Therefore, we suggest these lesions can be more accurately described as a form of OA-induced osteonecrosis, rather than \u27subchondral cysts\u27. © 2012 McErlain et al.; licensee BioMed Central Ltd

    Classical versus quantum dynamics of the atomic Josephson junction

    Full text link
    We compare the classical (mean-field) dynamics with the quantum dynamics of atomic Bose-Einstein condensates in double-well potentials. The quantum dynamics are computed using a simple scheme based upon the Raman-Nath equations. Two different methods for exciting a non-equilbrium state are considered: an asymmetry between the wells which is suddenly removed, and a periodic time oscillating asymmetry. The first method generates wave packets that lead to collapses and revivals of the expectation values of the macroscopic variables, and we calculate the time scale for these revivals. The second method permits the excitation of a single energy eigenstate of the many-particle system, including Schroedinger cat states. We also discuss a band theory interpretation of the energy level structure of an asymmetric double-well, thereby identifying analogies to Bloch oscillations and Bragg resonances. Both the Bloch and Bragg dynamics are purely quantum and are not contained in the mean-field treatment.Comment: 31 pages, 14 figure

    Bose-Einstein condensates in a double well: mean-field chaos and multi-particle entanglement

    Full text link
    A recent publication [Phys. Rev. Lett. 100, 140408 (2008)] shows that there is a relation between mean-field chaos and multi-particle entanglement for BECs in a periodically shaken double well. 'Schrodinger-cat' like mesoscopic superpositions in phase-space occur for conditions for which the system displays mean-field chaos. In the present manuscript, more general highly-entangled states are investigated. Mean-field chaos accelerates the emergence of multi-particle entanglement; the boundaries of stable regions are particularly suited for entanglement generation.Comment: 5 Pages, 5 jpg-figures, to be published in the proceedings of the LPHYS0

    Pengaruh Substitusi Tepung Kulit Pisang Raja Terhadap Kadar Serat dan Daya Terima Cookies

    Get PDF
    Introduction: Banana (Musa parasidiaca) peel has a high content of crude fiber and can be processed into cookies. Banana peel flour can be used as an ingredient in the making of cookies to increase fiber content. The use of banana peel flour and can affect the chemical quality, physical quality and sensory quality cookies. Purpose: The purpose on this study was to determine effect of banana peel flour stitution fiber content and acceptability of cookies. Methods: The design of this study was completely randomized design with 4 treatments that is banana peel flour substitution is 0% (control), 10%, 20% and 30%. Levels of fiber content were tested using the method of Gravimetry and acceptability of cookies using organoleptic test by seven levels of hedonic scale. Both data of fiber content and acceptability are not homogeneous and not normal so that Kruskal Wallis test was implemented. Results: The results showed that there was no substitution effect on the fiber content cookies. There was a significant substitution on acceptability of color, aroma, flavor, texture and overall cookies, with significant value respectively p=0,000; p=0,017; p=0,000; p=0,017; dan p=0,000. Conclusions: The highest fiber content (2,94%) contained in cookies with the substitution of 30%. Based on a acceptability it is recommended to use of 10% banana peel flour 10%. Keywords: cookies, banana peel flour, fiber content, acceptabilit

    Dynamics of Dipolar Spinor Condensates

    Full text link
    We study the semiclassical dynamics of a spinor condensate with the magnetic dipole-dipole interaction included. The time evolution of the population imbalance and the relative phase among different spin components depends greatly on the relative strength of interactions as well as on the initial conditions. The interplay of spin exchange and dipole-dipole interaction makes it possible to manipulate the atomic population on different components, leading to the phenomena of spontaneous magnetization and Macroscopic Quantum Self Trapping. Simple estimate demonstrates that these effects are accessible and controllable by modifying the geometry of the trapping potential.Comment: 13 pages,3 figure

    Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    Get PDF
    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology
    • …
    corecore