536 research outputs found

    Excitonic giant Zeeman effect in GaN:Mn^3+

    Full text link
    We describe a direct observation of the excitonic giant Zeeman splitting in (Ga,Mn)N, a wide-gap III-V diluted magnetic semiconductor. Reflectivity and absorption spectra measured at low temperatures display the A and B excitons, with a shift under magnetic field due to s,p-d exchange interactions. Using an excitonic model, we determine the difference of exchange integrals between Mn^3+ and free carriers in GaN, N_0(alpha-beta)=-1.2 +/- 0.2 eV. Assuming a reasonable value of alpha, this implies a positive sign of beta which corresponds to a rarely observed ferromagnetic interaction between the magnetic ions and the holes.Comment: 4 pages, 4 figure

    Microphotoluminescence study of disorder in ferromagnetic (Cd,Mn)Te quantum well

    Full text link
    Microphotoluminescence mapping experiments were performed on a modulation doped (Cd,Mn)Te quantum well exhibiting carrier induced ferromagnetism. The zero field splitting that reveals the presence of a spontaneous magnetization in the low-temperature phase, is measured locally; its fluctuations are compared to those of the spin content and of the carrier density, also measured spectroscopically in the same run. We show that the fluctuations of the carrier density are the main mechanism responsible for the fluctuations of the spontaneous magnetization in the ferromagnetic phase, while those of the Mn spin density have no detectable effect at this scale of observation.Comment: 4 pages, 3 figure

    p-Type doping of II-VI heterostructures from surface states: application to ferromagnetic Cd1−x_{1-x}Mnx_xTe quantum wells

    Full text link
    We present a study of p-type doping of CdTe and Cd1−x_{1-x}Mnx_xTe quantum wells from surface states. We show that this method is as efficient as usual modulation doping with nitrogen acceptors, and leads to hole densities exceeding 2×10112 \times 10^{11} cm−2^{-2}. Surface doping was successfully applied to obtain carrier-induced ferromagnetism in a Cd1−x_{1-x}Mnx_xTe quantum well. The observed temperature dependence of photoluminescence spectra, and the critical temperature, correspond well to those previously reported for ferromagnetic quantum wells doped with nitrogen.Comment: 4 figure

    Femtosecond study of the interplay between excitons, trions, and carriers in (Cd,Mn)Te quantum wells

    Full text link
    We present an absorption study of the neutral and positively charged exciton (trion) under the influence of a femtosecond, circularly polarized, resonant pump pulse. Three populations are involved: free holes, excitons, and trions, all exhibiting transient spin polarization. In particular, a polarization of the hole gas is created by the formation of trions. The evolution of these populations is studied, including the spin flip and trion formation processes. The contributions of several mechanisms to intensity changes are evaluated, including phase space filling and spin-dependent screening. We propose a new explanation of the oscillator strength stealing phenomena observed in p-doped quantum wells, based on the screening of neutral excitons by charge carriers. We have also found that binding heavy holes into charged excitons excludes them from the interaction with the rest of the system, so that oscillator strength stealing is partially blockedComment: 4 pages, 4 figure

    Antireflective photonic structure for coherent nonlinear spectroscopy of single magnetic quantum dots

    Full text link
    This work presents epitaxial growth and optical spectroscopy of CdTe quantum dots (QDs) in (Cd,Zn,Mg)Te barriers placed on the top of (Cd,Zn,Mg)Te distributed Bragg reflector. The formed photonic mode in our half-cavity structure permits to enhance the local excitation intensity and extraction efficiency of the QD photoluminescence, while suppressing the reflectance within the spectral range covering the QD transitions. This allows to perform coherent, nonlinear, resonant spectroscopy of individual QDs. The coherence dynamics of a charged exciton is measured via four-wave mixing, with the estimated dephasing time T2=(210 ± 40)T_2=(210\,\pm\,40) ps. The same structure contains QDs doped with single Mn2+^{2+} ions, as detected in photoluminescence spectra. Our work therefore paves the way toward investigating and controlling an exciton coherence coupled, via ss,pp-dd exchange interaction, with an individual spin of a magnetic dopant.Comment: 6 pages, 5 figure

    Influence of s,p-d and s-p exchange couplings on exciton splitting in (Zn,Mn)O

    Full text link
    This work presents results of near-band gap magnetooptical studies on (Zn,Mn)O epitaxial layers. We observe excitonic transitions in reflectivity and photoluminescence, that shift towards higher energies when the Mn concentration increases and split nonlinearly under the magnetic field. Excitonic shifts are determined by the s,p-d exchange coupling to magnetic ions, by the electron-hole s-p exchange, and the spin-orbit interactions. A quantitative description of the magnetoreflectivity findings indicates that the free excitons A and B are associated with the Gamma_7 and Gamma_9 valence bands, respectively, the order reversed as compared to wurtzite GaN. Furthermore, our results show that the magnitude of the giant exciton splittings, specific to dilute magnetic semiconductors, is unusual: the magnetoreflectivity data is described by an effective exchange energy N_0(beta-alpha)=+0.2+/-0.1 eV, what points to small and positive N_0 beta. It is shown that both the increase of the gap with x and the small positive value of the exchange energy N_0 beta corroborate recent theory describing the exchange splitting of the valence band in a non-perturbative way, suitable for the case of a strong p-d hybridization.Comment: 8 pages, 8 figure

    Mixed infections with distinct cytomegalovirus glycoprotein B genotypes in Polish pregnant women, fetuses, and newborns

    Get PDF
    The purpose of this investigation was to describe a distribution of cytomegalovirus (CMV) single and multiple genotypes among infected pregnant women, their fetuses, and newborns coming from Central Poland, as well as congenital cytomegaly outcome. The study involved 278 CMV-seropositive pregnant women, of whom 192 were tested for viral DNAemia. Human cytomegalovirus (HCMV) genotyping was performed for 18 of 34 pregnant women carrying the viral DNA and for 12 of their 15 offspring with confirmed HCMV infections. Anti-HCMV antibodies levels were assessed by chemiluminescence immunoassay (CLIA) and enzyme-linked fluorescence assay (ELFA) tests. Viral DNA loads and genotypes were determined by real-time polymerase chain reaction (PCR) assays for the UL55 gene. In the pregnant women, we identified HCMV gB1, gB2, gB3, and gB4 genotypes. Single gB2, gB3, or gB4 genotypes were observed in 14 (77.8 %) women, while multiple gB1–gB2 or gB2–gB3 genotypes were observed in four (22.2 %). Maternal HCMV genotypes determined the genotypes identified in their fetuses and newborns (p ≤ 0.050). Half of them were infected with single HCMV gB1, gB2, or gB3 genotypes and the other half with multiple gB1–gB2 or gB2–gB3 genotypes. Single and multiple genotypes were observed in both asymptomatic and symptomatic congenital cytomegaly, although no gB3 genotype was identified among asymptomatic cases. In Central Poland, infections with single and multiple HCMV strains occur in pregnant women, as well as in their fetuses and neonates, with both asymptomatic and symptomatic infections. HCMV infections identified in mothers seem to be associated with the viral genotypes in their children
    • …
    corecore