177 research outputs found

    Classical and Quantum Analysis of Repulsive Singularities in Four Dimensional Extended Supergravity

    Get PDF
    Non--minimal repulsive singularities (``repulsons'') in extended supergravity theories are investigated. The short distance antigravity properties of the repulsons are tested at the classical and the quantum level by a scalar test--particle. Using a partial wave expansion it is shown that the particle gets totally reflected at the origin. A high frequency incoming particle undergoes a phase shift of π2\frac{\pi}{2}. However, the phase shift for a low--frequency particle depends upon the physical data of the repulson. The curvature singularity at a finite distance rhr_h turns out to be transparent for the scalar test--particle and the coordinate singularity at the origin serves as a repulsive barrier at which particles bounce off.Comment: 20 pages, 14 figure

    Heuristic Models of Two-Fermion Relativistic Systems with Field-Type Interaction

    Get PDF
    We use the chain of simple heuristic expedients to obtain perturbative and exactly solvable relativistic spectra for a family of two-fermionic bound systems with Coulomb-like interaction. In the case of electromagnetic interaction the spectrum coincides up to the second order in a coupling constant with that following from the quantum electrodynamics. Discrepancy occurs only for S-states which is the well-known difficulty in the bound-state problem. The confinement interaction is considered too. PACS number(s): 03.65.Pm, 03.65.Ge, 12.39.PnComment: 16 pages, LaTeX 2.0

    Black Holes and Flop Transitions in M-Theory on Calabi-Yau Threefolds

    Get PDF
    We present fivedimensional extreme black hole solutions of M-theory compactified on Calabi-Yau threefolds and study these solutions in the context of flop transitions in the extended Kahler cone. In particular we consider a specific model and present black hole solutions, breaking half of N=2 supersymmetry, in two regions of the extended Kahler cone, which are connected by a flop transition. The conditions necessary to match both solutions at the flop transition are analysed. Finally we also discuss the conditions to obtain massless black holes at the flop transition.Comment: 19 pp, LaTe

    A relativistic action-at-a-distance description of gravitational interactions?

    Full text link
    It is shown that certain aspects of gravitation may be described using a relativistic action-at-a-distance formulation. The equations of motion of the model presented are invariant under Lorentz transformations and agree with the equations of Einstein's theory of General Relativity, at the first Post-Newtonian approximation, for any number of interacting point masses

    The Kahler Cone as Cosmic Censor

    Full text link
    M-theory effects prevent five-dimensional domain-wall and black-hole solutions from developing curvature singularities. While so far this analysis was performed for particular models, we now present a model-independent proof that these solutions do not have naked singularities as long as the Kahler moduli take values inside the extended Kahler cone. As a by-product we obtain information on the regularity of the Kahler-cone metric at boundaries of the Kahler cone and derive relations between the geometry of moduli space and space-time.Comment: 21 pages, 1 figure. Improved discussion of the relation between Kahler moduli and five-dimensional scalars. No changes in the conclusion

    AdS and stabilized extra dimensions in multidimensional gravitational models with nonlinear scalar curvature terms 1/R and R^4

    Full text link
    We study multidimensional gravitational models with scalar curvature nonlinearities of the type 1/R and R^4. It is assumed that the corresponding higher dimensional spacetime manifolds undergo a spontaneous compactification to manifolds with warped product structure. Special attention is paid to the stability of the extra-dimensional factor spaces. It is shown that for certain parameter regions the systems allow for a freezing stabilization of these spaces. In particular, we find for the 1/R model that configurations with stabilized extra dimensions do not provide a late-time acceleration (they are AdS), whereas the solution branch which allows for accelerated expansion (the dS branch) is incompatible with stabilized factor spaces. In the case of the R^4 model, we obtain that the stability region in parameter space depends on the total dimension D=dim(M) of the higher dimensional spacetime M. For D>8 the stability region consists of a single (absolutely stable) sector which is shielded from a conformal singularity (and an antigravity sector beyond it) by a potential barrier of infinite height and width. This sector is smoothly connected with the stability region of a curvature-linear model. For D<8 an additional (metastable) sector exists which is separated from the conformal singularity by a potential barrier of finite height and width so that systems in this sector are prone to collapse into the conformal singularity. This second sector is not smoothly connected with the first (absolutely stable) one. Several limiting cases and the possibility for inflation are discussed for the R^4 model.Comment: 28 pages, minor cosmetic improvements, Refs. added; to appear in Class. Quantum Gra

    Early epigenetic downregulation of microRNA-192 expression promotes pancreatic cancer progression

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is characterized by very early metastasis, suggesting the hypothesis that metastasis-associated changes may occur prior to actual tumor formation. In this study, we identified miR-192 as an epigenetically regulated suppressor gene with predictive value in this disease. miR-192 was downregulated by promoter methylation in both PDAC and chronic pancreatitis, the latter of which is a major risk factor for the development of PDAC. Functional studies in vitro and in vivo in mouse models of PDAC showed that overexpression of miR-192 was sufficient to reduce cell proliferation and invasion. Mechanistic analyses correlated changes in miR-192 promoter methylation and expression with epithelial–mesenchymal transition. Cell proliferation and invasion were linked to altered expression of the miR-192 target gene SERPINE1 that is encoding the protein plasminogen activator inhibitor-1 (PAI-1), an established regulator of these properties in PDAC cells. Notably, our data suggested that invasive capacity was altered even before neoplastic transformation occurred, as triggered by miR-192 downregulation. Overall, our results highlighted a role for miR-192 in explaining the early metastatic behavior of PDAC and suggested its relevance as a target to develop for early diagnostics and therapy. Cancer Res; 76(14); 4149–59. ©2016 AACR

    The repulsive nature of naked singularities from the point of view of Quantum Mechanics

    Full text link
    We use the Dirac equation coupled to a background metric to examine what happens to quantum mechanical observables like the probability density and the radial current in the vicinity of a naked singularity of the Reissner-Nordstr\"{o}m type. We find that the wave function of the Dirac particle is regular in the point of the singularity. We show that the probability density is exactly zero at the singularity reflecting quantum-mechanically the repulsive nature of the naked singularity. Furthermore, the surface integral of the radial current over a sphere in the vicinity of the naked singularity turns out to be also zero.Comment: 11 page

    Dirac's Observables for the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge

    Get PDF
    We define the {\it rest-frame instant form} of tetrad gravity restricted to Christodoulou-Klainermann spacetimes. After a study of the Hamiltonian group of gauge transformations generated by the 14 first class constraints of the theory, we define and solve the multitemporal equations associated with the rotation and space diffeomorphism constraints, finding how the cotriads and their momenta depend on the corresponding gauge variables. This allows to find quasi-Shanmugadhasan canonical transformation to the class of 3-orthogonal gauges and to find the Dirac observables for superspace in these gauges. The construction of the explicit form of the transformation and of the solution of the rotation and supermomentum constraints is reduced to solve a system of elliptic linear and quasi-linear partial differential equations. We then show that the superhamiltonian constraint becomes the Lichnerowicz equation for the conformal factor of the 3-metric and that the last gauge variable is the momentum conjugated to the conformal factor. The gauge transformations generated by the superhamiltonian constraint perform the transitions among the allowed foliations of spacetime, so that the theory is independent from its 3+1 splittings. In the special 3-orthogonal gauge defined by the vanishing of the conformal factor momentum we determine the final Dirac observables for the gravitational field even if we are not able to solve the Lichnerowicz equation. The final Hamiltonian is the weak ADM energy restricted to this completely fixed gauge.Comment: RevTeX file, 141 page
    • …
    corecore