12,194 research outputs found

    Satellite-tracked cumulus velocities

    Get PDF
    The research indicates that extreme caution must be exercised in converting cloud velocities into winds. The motion of fair-weather cumuli obtained by tracking their shadows over Springfield, Missouri revealed that the standard deviation in the individual cloud motion is several times the tracking error. The motion of over-ocean cumuli near Barbados clearly indicated the complicated nature of cumulus velocities. Analysis of whole-sky images obtained near Tampa, Florida failed to show significant continuity and stability of cumulus plumes, less than 0.3 mile in diameter. Cumulus turrets with 0.3 to 2 mile in size appear to be the best target to infer the mean wind within the subcloud layers. Cumulus or stratocumulus cells consisting of x number of turrets do not always move with wind. The addition and deletion of turrets belonging to a specific cell appear to be the cause of the erratic motion of a tracer cell. It may by concluded that the accuracy of wind estimates is unlikely to be better than 2m/sec unless the physical and dynamical characteristics of cumulus motion is futher investigated

    Reflectance measurement of two-dimensional photonic crystal nanocavities with embedded quantum dots

    Get PDF
    The spectra of two-dimensional photonic crystal slab nanocavities with embedded InAs quantum dots are measured by photoluminescence and reflectance. In comparing the spectra taken by these two different methods, consistency with the nanocavities' resonant wavelengths is found. Furthermore, it is shown that the reflectance method can measure both active and passive cavities. Q-factors of nanocavities, whose resonant wavelengths range from 1280 to 1620 nm, are measured by the reflectance method in cross polarization. Experimentally, Q-factors decrease for longer wavelengths and the intensity, reflected by the nanocavities on resonance, becomes minimal around 1370 nm. The trend of the Q-factors is explained by the change of the slab thickness relative to the resonant wavelength, showing a good agreement between theory and experiment. The trend of reflected intensity by the nanocavities on resonance can be understood as effects that originate from the PC slab and the underlying air cladding thickness. In addition to three dimensional finite-difference time-domain calculations, an analytical model is introduced that is able to reproduce the wavelength dependence of the reflected intensity observed in the experiment.Comment: 24 pages, 7 figures, corrected+full versio

    Passivity-Based Control of Human-Robotic Networks with Inter-Robot Communication Delays and Experimental Verification

    Full text link
    In this paper, we present experimental studies on a cooperative control system for human-robotic networks with inter-robot communication delays. We first design a cooperative controller to be implemented on each robot so that their motion are synchronized to a reference motion desired by a human operator, and then point out that each robot motion ensures passivity. Inter-robot communication channels are then designed via so-called scattering transformation which is a technique to passify the delayed channel. The resulting robotic network is then connected with human operator based on passivity theory. In order to demonstrate the present control architecture, we build an experimental testbed consisting of multiple robots and a tablet. In particular, we analyze the effects of the communication delays on the human operator's behavior

    Finite size corrections in massive Thirring model

    Get PDF
    We calculate for the first time the finite size corrections in the massive Thirring model. This is done by numerically solving the equations of periodic boundary conditions of the Bethe ansatz solution. It is found that the corresponding central charge extracted from the 1/L1/L term is around 0.4 for the coupling constant of g0=π4{g_0}=-{\pi\over 4} and decreases down to zero when g0=π3{g_0}=-{\pi\over{3}}. This is quite different from the predicted central charge of the sine-Gordon model.Comment: 8 pages, Latex, 2 figure

    Coherent shuttle of electron-spin states

    Full text link
    We demonstrate a coherent spin shuttle through a GaAs/AlGaAs quadruple-quantum-dot array. Starting with two electrons in a spin-singlet state in the first dot, we shuttle one electron over to either the second, third or fourth dot. We observe that the separated spin-singlet evolves periodically into the m=0m=0 spin-triplet and back before it dephases due to nuclear spin noise. We attribute the time evolution to differences in the local Zeeman splitting between the respective dots. With the help of numerical simulations, we analyse and discuss the visibility of the singlet-triplet oscillations and connect it to the requirements for coherent spin shuttling in terms of the inter-dot tunnel coupling strength and rise time of the pulses. The distribution of entangled spin pairs through tunnel coupled structures may be of great utility for connecting distant qubit registers on a chip.Comment: 21 pages, 10 figure

    The Three Component Electronic Structure of the Cuprates Derived from SI-STM

    Full text link
    We present a phenomenological model that describes the low energy electronic structure of the cuprate high temperature superconductor Bi2Sr2CaCu2O8+x as observed by Spectroscopic Imagining Scanning Tunneling Microscopy (SI-STM). Our model is based on observations from Quasiparticle Interference (QPI) measurements and Local Density of States (LDOS) measurements that span a range of hole densities from critical doping, p~0.19, to extremely underdoped, p~0.06. The model presented below unifies the spectral density of states observed in QPI studies with that of the LDOS. In unifying these two separate measurements, we find that the previously reported phenomena, the Bogoliubov QPI termination, the checkerboard conductance modulations, and the pseudogap are associated with unique energy scales that have features present in both the q-space and LDOS(E) data sets

    Low temperature vortex liquid states induced by quantum fluctuations in the quasi two dimensional organic superconductor kappa-(BEDT-TTF)_{2} Cu(NCS)_{2}

    Get PDF
    We report the transport properties in the vortex liquid states induced by quantum fluctuations at low temperature in the layered organic superconductor kappa-(BEDT-TTF)_{2} Cu(NCS)_{2}. A steep drop of the resistivity observed below about 1 K separates the liquid state into two regions. In the low resistance state at lower temperature, a finite resistivity with weak temperature dependence persists down to 100 mK at least. The finite resistivity in the vortex state at T ~= 0 K indicates the realization of quantum vortex liquid assisted by the strong quantum fluctuations instead of the thermal one. A possible origin for separating these liquid states is a remnant vortex melting line at the original position, which is obscured and suppressed by the quantum fluctuations. A non-linear behavior of the in-plane resistivity appears at large current density in only the low resistance state, but not in another vortex liquid state at higher temperature, where the thermal fluctuations are dominant. The transport properties in the low resistance state are well understood in the vortex slush concept with a short-range order of vortices. Thus the low resistance state below 1 K is considered to be a novel quantum vortex slush state.Comment: 7 pages, 5 figure
    corecore