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ABSTRACT

Velocities of tracer clouds have been computed by NOAA, NASA, Stanford

Research, University of Wisconsin, University of Chicago, and others. Despite the

fact that their methods and inherent computation speeds are different from each other,

the present state-of-art permits the computations with 1 m/sec speed and 40 direction

in standard deviation. Such an accuracy in the cloud velocity is satisfactory for most

practical purposes.

The research presented in this paper warns that we have to exercise extreme

caution in converting cloud velocities into winds. The motion of fair-weather cumuli

obtained by tracking their shadows over Springfield, Missouri revealed that the

standard deviation in the individual cloud motion is several times the tracking error.

The motion of over-ocean cumuli near Barbados clearly indicated the complicated

nature of cumulus velocities. Analysis of whole-sky images obtained near Tampa,

Florida failed to show significant continuity and stability of cumulus plumes, less than

0. 3 mile in diameter.

Cumulus turrets with 0. 3 to 2 mile in size appear to be the best target to infer

the mean wind within the subcloud layers. Cumulus or stratocumulus cells consisting

of x number of turrets do not always move with wind. The addition and deletion of

turrets belonging to a specific cell appear to be the cause of the erratic motion of a

tracer cell. It may be concluded that the accuracy of wind estimates is unlikely to be

better than 2 m/sec unless the physical and dynamical characteristics of cumulus

motion is further investigated.

1 The research reported in this paper was performed both at the University of Chicago
and at Goddard Space Flight Center. The former was supported by the National Oceanic
and Atmospheric Administration, MSL, under grant E-198-68G and by the National
Aeronautics and Space Administration under grant NGR 14-001-008. Research on
tropical cumuli off Barbados was supported by the Atmospheric Sciences Section, National
Science Foundation, NSF Grant GA-31589.
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1. Introduction

Since 1968, when ATS pictures became available, meteorologists have been

computing cloud velocities, assuming that they can be approximated as environmental

winds. Namely, clouds are regarded as natural tracers to infer winds. Unfortunately,

a cloud does not move precisely with the environmental wind. In many cases, however,

we find a suitable level at which the wind velocity coincides, more or less, with the

cloud velocity. Based on this approximation, Hubert and Whitney (1971) introduced the

level of best fit (LBF) to designate the altitude of the flow which steers a tracer cloud.

The difference between cloud and wind velocities is resulted by the complicated

nature of cloud including the vertical wind shear, up- and downdrafts, the characteristics

of entrainment as studied by Stommel (1947) and Simpson (1971). Despite such an

inevitable complication, a large-scale flow can be established based mainly on the cloud

velocity along with the estimated LBF. Serebreny, Brain and Hadfield (1969) concluded

that there were no systematic variations in the velocities when clouds of various sizes

are tracked. This would imply that clouds of any size may be tracked in estimating

flow patterns. By tracking cumulus cells of various sizes in ATS I pictures, Fujita,

Watanabe, and Izawa (1969) obtained patterns of low-level flow over the equatorial east

Pacific. As has been pointed out by Simpson and Dennis (1972), tropical cumuli over

the ocean are good tracers with relatively long life and time continuity.

As a mesoscale application of satellite imagery, Sikdar and Suomi (1972)

determined the expansion of cloud boundary in successive ATS pictures. The mesoscale
-5 -1

or the cloud-scale divergence obtained was as large as 50 x 10 sec , proving that an

explosive growth is an important feature of tropical clouds.

Following the Line-Island Experiment, Fujita, Murino, et al. (1968) computed

motions of tropical clouds near Hawaii. Meanwhile a network of ground cameras was

established at the top of Haleakala volcano on Maui. The comparison of satellite-tracked

and terrestrial photogrammetric velocities of clouds resulted in serious questions.

Do clouds move with environmental winds?

If not, what is the error expected?

How does the cloud type influence the error?



and many others. Especially when multi-layer clouds and vertical wind shear are

involved, these questions cannot be answered easily.

Meanwhile, the need for estimating winds from satellite-tracked cloud velocities

is urgent. GARP/GATE requires detailed information of the accuracy and the nature of

cloud tracking. Velocities of numerous cumuli over U. S. to be determined from SMS

pictures can be used literally as "a million anemometers", if we know how to interpret

them.

To meet these requirements the authors attempted to review basic problems on

the interpretation of low-cloud velocities. Both high clouds and cumulonimbi also

present serious problems in tracking and interpretation. A research on these clouds is

being conducted toward its completion into a separate paper.

2. ATS-Tracked Low-Cloud Velocities

Since the METRACOM system of cloud-velocity computation was completed

by SMRP, a large number of experimental computations have been made. In view

of the GATE/GARP interest, the tropical north Atlantic was selected as being the

test area. For METRACOM system, refer to Chang et al. (1973).

In tracking cumulus cells, extremely large cells were avoided because of

the suspicion that their motions could seriously be affected by their development

and dissipation. Moreover, a large cloud may extend to high levels and thus be

affected by vertical wind shear.

For the purpose of tracking cumulus clouds, clouds may be classified into

the following six sizes, see Table I.

Table I. Classification of Cumulus Sizes for Tracking Purposes

Horizontal Dimensions in miles Classification

less than 0. 3 plume
0.3 - 2 turret
2 - 5 small cell
5 - 10 medium cell

10 - 50 large cell
larger than 50 giant cell



Because of the resolution of ATS pictures, neither plume nor turret can be

tracked. Target clouds for our experiments have been limited to cumulus cells

with a 2-mile size or larger. Whenever possible, however, both small and medium

cells were chosen as good targets, while avoiding large and giant cells. Over the

regions of scattered to overcast cumuli in ATS pictures several target clouds of

these sizes can be found within each one-degree square. Therefore, it is common

to be able to track 50 to 100 clouds within a 5-degree square.

Presented in Fig. 1 is an example of the cloud-motion charts produced by

the METRACOM system. An elliptical area was divided into southwest and north-

east areas each approximately 6-degree square. The former includes 83 cloud-

motion vectors and the latter, 102. The computed mean direction of the northeast

group is 218.1' with a standard deviation of 6.5* (Fig. 2). The mean speed was

calculated to be 12.0 m/s with 1. 6 m/s standard deviation. The standard deviation

of the southwest group is 8. 2* which is 26% larger than that of the northeast group.

The reason for this difference is the curved flow seen in the southwest area,

suggesting that the variation in cloud velocities includes true meteorological char-

acteristics of the flow.
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45 o " 40, *1 22 2' \ ' '25Nve te t N hA int

3~l~ u~ 2 3

A / .22 ,- . ... -3.|2 i ' 2

- 'l 20 22 2 ' 23
, OS / T 2' , 2 / 22

Lo ou 22-A extracted ro 23 r27l c e

2 22

22 '4-c u , 1 p a

152N 24 .. ,' 21 22

for statistical analyses. July 26, 1968. The windspeeds are in knots.



The tracking error given by computer, including that of gridding, missynch,

etc., appears to be no more than 1. 0 m/s standard deviation in the cloud speed. It

is conservative to estimate the direction error to be 5 . The cloud tracking with

such an accuracy can be achieved as long as we stay within good-target area.

The extreme deviation from the mean speed is 3 to 4 m/s, which is several

times larger than the standard deviation. This extreme value is 25 to 30% of the

measured cloud speed. The possibility that this extreme was produced by the

tracking procedure was assessed. In manual tracking of cumulus cells meteorolo-

gists define a tracking point as a position that coincides with the geometric center

if a cloud is axially symmetric in both brightness and boundary. However, these

cells are hard to find. Instead, what a meteorologist sees is a group of cells in

motion. By virtue of pattern recognition, the tracking point of a cumulus cell is

selected conveniently at the weighted brightness center. In this test, the meteorolo-

gists who performed the tracking were instructed not to follow the geometric center

nor the brightness center. In other words, the cloud-motion vector as tracked by

the meteorologist is the motion of a cloud of his own definition. We may assume

that the extreme variations in the tracked velocities are the results of the nature

SOUTHWEST NORTHEAST
MEAN SPEED I .4m/s MEAN SPEED 12.Om/s

Sv-j ms s

-4 -3 2 + 3 4m/s -4 -3 - - 0 + +2 +3 4m/s

MEAN DIRECTION N RECTION229.3* 218...

-20 -15 -o -5 O +5 +10 +15 +zo -15 -O -5 0 +5 +10 +15 +zo20

Fig. 2. Distribution of variance in speed and direction of clouds shown in Fig. 1.
Standard deviation of 1 m/sec and 5 deg. can be achieved. SDV denotes
standard deviation.



of changes in the structure of the tracked cell itself. Some may grow by adding

new turrets on a specific side of the cell while others may split into two or more

cells, making it very difficult to define the tracking point or points.

3. Problems in Tracking Multi-Turret Cumuli

The size of cumulus and stratocumulus clouds tracked as low-level clouds

in the previous section ranges probably between two and ten miles. Much larger

clouds were assumed to be bad targets, because a large cloud is likely to be

characterized by a large number of tall turrets.

Detailed study of small and medium-sized cells in ATS pictures suggested

that cumulus clouds over the tropical Atlantic are very stable compared with their

counterparts over the tropical land areas. These clouds over water can be tracked

for a period of 30 to 60 minutes without losing their identities as well-defined cells.

It should be noted, however, that the shape of a cell varies significantly within the

30 minutes of ATS frame time.

A cumulus cell depicted by a two mile resolution image, for instance, is

characterized by

1. Front edge

2. Rear edge

3. Geometric center

4. Brightness center.

Computed cloud velocities may vary according to which of these tracking points is

used.

A growing cell tends to move fast when the front edge is tracked. The

brightness center, located not always at the geometric center of a cumulus cell is

a significant point within a target cloud. Experience shows that the brightness

center moves slightly faster than that of the geometric center of the cloud boundary.

A cumulus cell in its dissipating stage is far more complicated in terms of

cloud tracking, because a cell does not always shrink into an invisible point.

Instead, a cell often splits into two or more pieces, each traveling with a different

velocity. Since the split-cell phenomena occur so often, we have not been selecting

dissipating cells as being a good target.



During the BOMEX experiment in July 1969, a large number of cumulus

pictures were taken at one- to three-minute intervals. The purpose of the photog-

raphy was to determine the microstructure of cumulus clouds which are to be

tracked in GATE/GARP experiments.

A typical example of traveling low-cloud cells is shown in Fig. 3. The

sequence was taken at 3-minute intervals in the direction perpendicular to the

cloud motion. There are two cells identified, respectively, as a GROWING cell and

a DISSIPATING cell.

Fig. 3. Horizontal views of multi-turret cumulus cells in their stages of develop-
ment and dissipation. Taken from Barbados at 3-min intervals facing south.
1407-1422 Barbados time, July 18, 1969.



The growing cell at 1407 was a swelling cumulus approximately 2 miles in

size. Within 15 minutes, the cell grew three times into a 6-mile size, consisting

of 7 turrets. The center of each turret at the cloud base is identified with a circle.

The slope of a line connecting a specific turret is proportional to the horizontal

speed of the turret.

Through a simple calculation we are able to estimate the variation of tracked

cloud speed as a function of the tracking point, abbreviated as TP.

Table II. Variation of Cloud Speed in Relation to the TP
of a 2 to 6 mi size growing cell in Fig. 3

Geometric Brightness
TP Turret Front Edge Rear Edge Center Center

Rel. Speed 1.00 1.42 0.62 1. 16 0.90
% Speed reference 42% fast 38% slow 16% fast 10% slow

The speed variation shown in Table II is for one case and may not be the representa-

tive case of tropical cumuli over the ocean. The table simply points out the importance

of the selection of the TP in order to determine the meaningful cloud velocities. The

speed variation depends upon various parameters such as growth rate of turrets,

preferable location of new turrets, cloud environments including the vertical wind

shear, temperature, relative humidity etc.

The dissipating cell in the figure started out with a 2-mile cell, similar to

the growing cell to the left. Within several minutes, the cell split into two cells,

the one consisting of a weakening turret and the other, a plume ascended from the

right-side turret. If we were to track the geometric centers, the speed of each

center, before and after the split, is so different that the selection of a proper

speed for the dissipating cloud would be impossible.

The plume, P is naturally under the influence of higher-level wind, moving

considerably faster than the parent turret. If we are able to estimate the height of

the plume based on satellite data, the velocity of the plume can be used effectively

for the determination of the vertical wind shear. The purpose of this example and

discussion is to point out difficulties in obtaining meaningful cloud velocities by

tracking dissipating cells.



The translational velocity of a relatively small turret is likely to represent

the mean flow speed within the subcloud layer. Inevitably, there will be some

difference between the turret velocity and the mean velocity of the subcloud layer.

The difference will depend on the vertical wind shear.

4. 0. 3 to 0.5-Mile Resolution

Despite inevitable uncertainties relating cumulus velocities with environ-

mental winds, high resolution satellite pictures are of great value in solving the

problems of cloud tracking.

Beginning early in 1974, SMS/GOES will transmit visible pictures with a

0.5-mile resolution. They will provide us with an excellent opportunity for

tracking individual turrets rather than their group which appears as a cell in

low-resolution pictures.

A DAPP picture of June 19, 1972 showing Lake Michigan and vicinity is

presented as an example of one-third mile resolution. The time of the picture is

the local noon. Of interest are the cumulus patterns affected by relatively cold

lakes, both large and small (see Fig. 4).

Fig. 4. A DAPP picture with one-third mile resolution showing the Lake Michigan
area. 1145 CST June 19, 1972. Surface wind speeds are superimposed.
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Wind directions and speeds superimposed upon the DAPP picture reveal

the existence of cloud streets over the area with 10 kt or stronger surface winds.

The wind field over Lake Michigan is characterized by local divergence, resulting

in an extensive cumulus-free area within the wake of the Lake. Even some small

lakes in Wisconsin, such as Lake Winnebago and the Petenwell and Castle Rock

Flowages are acting as the sources of cumulus-free wakes extending over 50 miles

downwind.

If we track the motion of these cumulus cells or turrets in an attempt to

determine the environmental winds, it would be feasible to map detailed flow

patterns which cannot possibly be determined from surface observations.

ITOS/NOAA satellites have been furnishing us with the Very High Resolution

Radiometer (VHRR) pictures with the dual channel of the visible and IR spectra.

Estimates of cloud heights have been attempted by combining both IR and visible

pictures. An example of a NOAA-2 image enlarged to the resolution limit of the

picture is presented in Fig. 5. Numerous cloud streets with both cyclonic and

Fig. 5. VHRR picture of August 2, 1973 enlarged into a full resolution image.
The picture was rectified by projecting onto a curved surface.



anticyclonic curvatures are seen over southern Missouri and northern Arkansas.

It is of interest to find that no cumulus streets exist beneath scattered fuzzy clouds

which are likely to be high clouds. We may speculate that cloud streets formed at

this morning hour over cirrus free regions.

In an attempt to determine the density of trackable cumuli a cloud-truth

experiment was conducted on April 13-14, 1973. A Learjet was used for the photo-

graphic mission, flying over the various regions of cloud formations.

The photograph shown in Figure 6, with 10-mile grid lines superimposed,

was taken looking toward Chicago and Gary where a lake-breeze front began to

form in the morning. The picture shows that the cloud size varies from 0. 1 mile

to 2 miles. The number of trackable clouds will naturally vary with the picture

resolution.

Fig. 6. A view of Chicago and Gary area taken from a Learjet flying at 45,000 ft.
showing the development of lake breeze clouds. 0952 CST, April 13, 1973.

If the resolution were 0.5-mile, each square with a 10-mile side would

include up to 15 cumuli. The number of trackable clouds within a unit area depends

not only uipon the picture resolution, but also upon the availability of proper size

clouds.
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It would be of extreme value to track cumulus clouds in all sizes as soon

as SMS/GOES images become available. Such an attempt will permit us to determine

the velocities of large clouds in relation to those of surrounding small ones. The

motion field of small cumuli could be used to determine the rotational and divergent

characteristics of the inflow field around a large cloud.

Do small clouds move with the environmental winds? If the answer is "yes",

how small should a trackable cloud be in order to minimize the vector difference

between the velocities of cloud and surrounding air? Both encouraging and dis-

couraging answers as to this basic question will be given in the.next chapter.

5. Life and Motion of Single Turret Cumuli

For the purpose of photographing small cumuli while looking both upward

and downward, a set of whole-sky stereo cameras were operated at the Tampa,

Florida airport. The Learjet flights of April 12-13, 1973 were chosen for the

time-lapse stereo photography.

Analyses of individual turrets photographed at 5 frames per minute turned

out to be rather discouraging because the smaller the clouds the shorter their lives.

A half-mile size turret can be tracked for only about 10 minutes. Cloud elements

of much smaller size are no more than the condensation particles within the upper-

most volume of rapidly changing thermals.

Presented in Fig. 7 is a typical example of a cumulus turret (identified with

black dots) and rapidly changing cumulus plumes. The shape and the motion of the

plumes, less than 0. 3-mile across, are so erratic that variations of 30% in speed

and 30* in the direction are commonly observed.

Small pieces of clouds are not moving with the horizontal components of

the environmental winds. The addition of the newly condensed droplets due to the

thermal-size upward motion as well as the differential evaporation of small droplets

contributes significantly to the irregular movement of whole-sky tracked motion of

plumes.

Cumulus turrets with 0. 3 to 2-mile horizontal dimensions were found to

move rather steadily. The cloud with the black dot in Fig. 7 reached a 0. 4-mile
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Fig. 7. A cumulus turret as seen in a series of whole-sky pictures taken at
one-minute intervals. 1203-1210 EST, April 10, 1973.

size during its 10-minute life across the picture field. It should be noted, however,

that a steady motion of cumuli does not mean that their motion coincides with the

environmental winds. Nonetheless, a steady motion is more meaningful in terms of

its comparison with the environmental winds. In other words, 0.3 to 2-mile size

turrets appear to be characterized by relatively steady sub-cloud updrafts. The

translational motion of an updraft is closely related to the mean horizontal motion

of the subcloud layer in which the root of the updraft is embedded.
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In order to determine the motion of single- and dual-turret cumuli, a

method of tracking cloud shadows has been developed. Shadow tracking using aerial

photographs is very accurate where the shadow movements are related to ground

objects on a topographic map. During the tracking period of up to about 10 minutes,

the change in the direction of the sun is no more than 3* which may be neglected

for most practical purposes.

On May 15, 1972, the day of ATS-III picture shown in Fig. 8, a test experi-

ment of shadow tracking was conducted while flying over Springfield, Missouri.

A Learjet flying at 45,000 ft. was used as the platform for this purpose. Springfield

was selected for three reasons: the availability of 7-1/2 min. maps covering the

metropolitan area, the existence of 0. 1 to 2-mile cumuli, and a PIBAL release at

1200 CST about two hours prior to the aircraft flight.

As shown in the ATS picture, Springfield was located in the southwest sector

of an occluded low pressure system centered near Detroit, Michigan. The city area

was under the influence of the northwesterly flow. Scattered cumuli appearing as

a vast gray area extended eastward to the main cloud mass.

Fig. 8. An ATS picture taken at the time of the cloud shadow experiment.
1249 CST, May 15, 1973.
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A series of oblique photographs such as those shown in Fig. 9 were taken

every 30 sec on the minute and half minute. Selected target shadows were also

photographed with a 135-mm lens at 15 and 45 sec past each minute, so that important

shadows can be evaluated at 15-sec intervals.

Fig. 9. An example of the aerial pictures taken over Springfield.

Picture time, 1347 CST, May 15, 1973.

An example of the shadow mapping over the city of Springfield is shown in

Fig. 10. Geometric centers of shadows at one-minute intervals are given in either

large or small circles, depending upon the cloud dimensions. The shadow tracks

in the figure appear somewhat like a stretched S shape, revealing that clouds

obtained their northwesterly motion as they grew larger.

The major source of error in tracking shadows is not their position inaccuracy.

Instead, the determination of the geographic center of the irregular shaped shadow

boundary appears to be the problem. The change in the shadow shape becomes

more pronounced when a weak thermal produces a tiny cloud. Most of the tracking

errors and uncertainties can be minimized through successive fixes at 15 to 30-sec.

intervals.
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Fig. 10. Tracks of cloud shadows over Springfield. Note that some tracks
curve like a stretched letter S.

The S-shaped shadow tracks can be explained based on the 1200 CST PIBAL

at Springfield (see Fig. 11). The wind direction below the cloud base at 5,500 ft was

about 3100, while the wind direction above the cloud base shifted to 325" . Such a

vertical wind shear may curve the trajectory of tall clouds slightly to the right,

resulting in a right deviation. When updraft decreases, the newly condensed portion

of a cloud will drift, being affected by the mean flow within the subcloud layers.

The cloud motion will, then, deviate to the left, thus completing an S-shaped shadow

trajectory.

Statistical diagrams of cloud motion give interesting distributions of the

direction and speed (see Fig. 12). As for the speed, small clouds tended to move

faster than large ones. One contributing factor to this result may be the effective

height of the root of the updraft. Since the wind speeds within the subcloud layers

increased upward the higher the root of the updraft, the larger the horizontal momen-
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1200 CST PIBAL, SPRINGFIELD, MO.
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Fig. 11. A model oi cumulus clouds used for tracking their shadows over
Springfield, Missouri. May 15, 1972.
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Fig. 12. Direction and speed of fair-weather cumuli over Springfield, Missouri.
Motions computed from cloud shadows. May 15, 1972.
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turn at the cloud base. If we assume that the effective height of the inflow for a

large cloud is much lower than that for a small cloud, a small cloud could move

faster than a large one.

The effective height of the inflow is a difficult parameter to define because

the entrainment taking place below the cloud base has a tendency to raise the effective

height. In effect, a small updraft or a thermal originating near the surface will be

mixed with the horizontal wind within the upper subcloud layers due to the over-

whelming entrainment. On the other hand, a large cloud will be able to draw the

air from the lower subcloud layers without suffering much from the effects of entrain-

ment.

6. Conclusions

Since ATS I and III pictures became available to meteorologists, cloud

tracking to infer environmental winds became one of the most important end products.

In view of the inherent difference between cloud and air motions, proper interpretation

of the tracked cloud velocities in relation to three-dimensional air motion around

target clouds is of vital importance.

The nature of the low-cloud velocity explored in this paper revealed that it

would be necessary not to interpret cloud velocities as being the environmental winds.

The basic knowledge of cloud parameters, involving cloud dynamics, cloud heights,

LBF, cloud types, will permit us to minimize the possible error in the wind estimates.

Naturally some target clouds are good, while others are bad. "Cumulus Plumes"

less than 0. 3 mile in horizontal dimensions are bad targets because of their unsteady

updrafts. This would mean that it is not necessary to increase the image resolution

beyond about 0. 3 mile for the purpose of cumulus tracking.

"Cumulus Turrets" ranging between 0. 3 and 2 miles in size are concluded to

be the best target to infer winds within the subcloud layers. They are likely to be

single-turret clouds. From the tracking point view, however, these clouds are

hard-to-track targets, because they are small and relatively short in life.

"Small Cells", 2 to 5 miles in size are also good targets for wind determination.

Because of the expected variation of turrets within a cell, a proper tracking point such



19

as brightness or geometric center will have to be selected. These cells are easy

targets to be tracked for up to two hours, especially over the ocean.

"Medium, Large, and Giant Cells" are the easiest target to be tracked. If

these cells are relatively flat, somewhat like stratocumulus cells, their motion is not

too far from that of small cells. Cells with deep, penetrative convection often move

differently, necessitating their discrimination against small cells.

Cumuliform clouds seen over land areas are short lived, characterized often by

an erratic motion. Experiences have shown that large turrets and small cells in

successive ATS pictures do not always maintain their continuity. These target clouds

are, however, very important in estimating the low-level flow over continents. It

would be necessary to investigate kinematic characteristics of small cells based on

SMS/GOES pictures and cloud-truth experiments.
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