1,939 research outputs found

    Vendettas

    Get PDF

    Autoplot: A browser for scientific data on the web

    Full text link
    Autoplot is software developed for the Virtual Observatories in Heliophysics to provide intelligent and automated plotting capabilities for many typical data products that are stored in a variety of file formats or databases. Autoplot has proven to be a flexible tool for exploring, accessing, and viewing data resources as typically found on the web, usually in the form of a directory containing data files with multiple parameters contained in each file. Data from a data source is abstracted into a common internal data model called QDataSet. Autoplot is built from individually useful components, and can be extended and reused to create specialized data handling and analysis applications and is being used in a variety of science visualization and analysis applications. Although originally developed for viewing heliophysics-related time series and spectrograms, its flexible and generic data representation model makes it potentially useful for the Earth sciences.Comment: 16 page

    The Economics of Solidarity: A Conceptual Framework

    Get PDF
    For many people "solidarity" has become a meaningless word used in slogans - too often used without leading to any economic consequences. We show in this paper conditions under which solidarity can be a powerful instrument. In a solidary action, an individual in a group contributes to a series of actions that aims for a reallocation of scarce resources. The willingness to contribute is mainly influenced by the efficiency of the objective of the solidary action, and is enhanced by feelings of mutual exchange (solidarity) within a group. --solidarity,altruism,dynamic,mutual

    Self-energy corrections to anisotropic Fermi surfaces

    Full text link
    The electron-electron interactions affect the low-energy excitations of an electronic system and induce deformations of the Fermi surface. These effects are especially important in anisotropic materials with strong correlations, such as copper oxides superconductors or ruthenates. Here we analyze the deformations produced by electronic correlations in the Fermi surface of anisotropic two-dimensional systems, treating the regular and singular regions of the Fermi surface on the same footing. Simple analytical expressions are obtained for the corrections, based on local features of the Fermi surface. It is shown that, even for weak local interactions, the behavior of the self-energy is non trivial, showing a momentum dependence and a self-consistent interplay with the Fermi surface topology. Results are compared to experimental observations and to other theoretical results.Comment: 13 pages, 10 figure

    Plant biomass nitrogen and effects on the risk of nitrate leaching of intercrops under organic farming in Eastern Austria

    Get PDF
    Data on the potential of intercrops to reduce soil nitrate contents, on their N accumulation and biological nitrogen fixation (BNF) are lacking for organic farming in the dry, pannonic region of Eastern Austria. The effect of legumes, non-legumes, and legumes + non-legumes used as intercrops on inorganic soil nitrogen, crop yield and biomass N, and BNF were tested in comparison to bare fallow. Non-legumes and legumes + non-legumes were more efficient than legumes in reducing inorganic soil N contents in autumn and nitrate contents in soil solution from the subsoil in winter. This reduction in inorganic soil N did not last until March of the following year due to an N mineralisation from the mulch. The legume + non-legume mixture contained a larger amount of crop N than both legumes and non-legumes. This was due to the combined effect of soil-N uptake by the non-legumes and BNF by the legumes in the mixture

    Melting properties of a simple tight-binding model of transition metals: I.The region of half-filled d-band

    Full text link
    We present calculations of the free energy, and hence the melting properties, of a simple tight-binding model for transition metals in the region of d-band filling near the middle of a d-series, the parameters of the model being designed to mimic molybdenum. The melting properties are calculated for pressures ranging from ambient to several Mbar. The model is intended to be the simplest possible tight-binding representation of the two basic parts of the energy: first, the pairwise repulsion due to Fermi exclusion; and second, the d-band bonding energy described in terms of an electronic density of states that depends on structure. In addition to the number of d-electrons, the model contains four parameters, which are adjusted to fit the pressure dependent d-band width and the zero-temperature pressure-volume relation of Mo. We show that the resulting model reproduces well the phonon dispersion relations of Mo in the body-centred-cubic structure, as well as the radial distribution function of the high-temperature solid and liquid given by earlier first-principles simulations. Our free-energy calculations start from the free energy of the liquid and solid phases of the purely repulsive pair-potential model, without d-band bonding. The free energy of the full tight-binding model is obtained from this by thermodynamic integration. The resulting melting properties of the model are quite close to those given by earlier first-principles work on Mo. An interpretation of these melting properties is provided by showing how they are related to those of the purely repulsive model.Comment: 34 pages, 12 figures. Accepted for publication in Journal of Chemical Physic

    Nearsightedness of Electronic Matter in One Dimension

    Full text link
    The concept of nearsightedeness of electronic matter (NEM) was introduced by W. Kohn in 1996 as the physical principal underlining Yang's electronic structure alghoritm of divide and conquer. It describes the fact that, for fixed chemical potential, local electronic properties at a point rr, like the density n(r)n(r), depend significantly on the external potential vv only at nearby points. Changes Δv\Delta v of that potential, {\it no matter how large}, beyond a distance R\textsf{R}, have {\it limited} effects on local electronic properties, which tend to zero as function of R\textsf{R}. This remains true even if the changes in the external potential completely surrounds the point rr. NEM can be quantitatively characterized by the nearsightedness range, R(r,Δn)\textsf{\textsf{R}}(r,\Delta n), defined as the smallest distance from rr, beyond which {\it any} change of the external potential produces a density change, at rr, smaller than a given Δn\Delta n. The present paper gives a detailed analysis of NEM for periodic metals and insulators in 1D and includes sharp, explicit estimates of the nearsightedness range. Since NEM involves arbitrary changes of the external potential, strong, even qualitative changes can occur in the system, such as the discretization of energy bands or the complete filling of the insulating gap of an insulator with continuum spectrum. In spite of such drastic changes, we show that Δv\Delta v has only a limited effect on the density, which can be quantified in terms of simple parameters of the unperturbed system.Comment: 10 pages, 9 figure

    Disclinations, dislocations and continuous defects: a reappraisal

    Full text link
    Disclinations, first observed in mesomorphic phases, are relevant to a number of ill-ordered condensed matter media, with continuous symmetries or frustrated order. They also appear in polycrystals at the edges of grain boundaries. They are of limited interest in solid single crystals, where, owing to their large elastic stresses, they mostly appear in close pairs of opposite signs. The relaxation mechanisms associated with a disclination in its creation, motion, change of shape, involve an interplay with continuous or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or are akin to Nye's dislocation densities, well suited here. The notion of 'extended Volterra process' takes these relaxation processes into account and covers different situations where this interplay takes place. These concepts are illustrated by applications in amorphous solids, mesomorphic phases and frustrated media in their curved habit space. The powerful topological theory of line defects only considers defects stable against relaxation processes compatible with the structure considered. It can be seen as a simplified case of the approach considered here, well suited for media of high plasticity or/and complex structures. Topological stability cannot guarantee energetic stability and sometimes cannot distinguish finer details of structure of defects.Comment: 72 pages, 36 figure

    Magnetic Field Effects on Quasiparticles in Strongly Correlated Local Systems

    Full text link
    We show that quasiparticles in a magnetic field of arbitrary strength HH can be described by field dependent parameters. We illustrate this approach in the case of an Anderson impurity model and use the numerical renormalization group (NRG) to calculate the renormalized parameters for the levels with spin σ\sigma, Ï”~d,σ(H)\tilde\epsilon_{\mathrm{d},\sigma}(H), resonance width Δ~(H)\tilde\Delta(H) and the effective local quasiparticle interaction U~(H)\tilde U(H). In the Kondo or strong correlation limit of the model the progressive de-renormalization of the quasiparticles can be followed as the magnetic field is increased. The low temperature behaviour, including the conductivity, in arbitrary magnetic field can be calculated in terms of the field dependent parameters using the renormalized perturbation expansion. Using the NRG the field dependence of the spectral density on higher scales is also calculated.Comment: 15 pages, 17 figure
    • 

    corecore