7,312 research outputs found

    Control-structures Interaction Test of the LACE Satellite

    Get PDF
    It is clear that additional experience and validation of Control Structures Interaction (CSI) techniques are needed in controlling the structural dynamics of flexible spacecraft. It is also clear that the effects of the space environment such as weightlessness dictate that this be done in space. Unfortunately, orbital tests are difficult to achieve because of the high cost of the test article, the launch into orbit, the instrumentation, and communication systems. The Low-power Atmospheric Compensation Experiment (LACE) Satellite has provided an opportunity to achieve a CSI test in space for very little cost. First, the CSI test rode piggy-back and did not interfere with the primary objective of LACE. Second, the novel technique of using ground based measurements of vibration of the orbiting satellite was employed. The LACE has a heavy central body to which is attached booms with lengths as long as 150 feet. The ground measurements were obtained using laser Doppler radar at the MIT Lincoln Laboratory Firepond Facility. The initial tests demonstrated the accuracy of the vibration measurements and obtained structural responses for enhancing the accuracy of the mathematical model of the structural dynamics. Germanium corner-cube retroreflectors attached to the central body and a boom deployed to 18 feet ensured a high strength return signal. Subsequent tests demonstrated the ability of an open-loop damper to attenuate the vibrations of the orbiting satellite. The LACE test results are important in contributing to the validation of a CSI technique, and demonstrating a novel ground measurement technique for orbital tests that is accurate but which has very low cost

    Theoretical and experimental studies of visco type and buffered shaft seals Semiannual progress report, 15 Oct. 1966 - 15 Apr. 1967

    Get PDF
    Theory and performance of viscoseal and buffered seal under laminar and turbulent condition

    Lunar material transport vehicle

    Get PDF
    The proposed vehicle, the Lunar Material Transport Vehicle (LMTV), has a mission objective of efficient lunar soil material transport. The LMTV was designed to meet a required set of performance specifications while operating under a given set of constraints. The LMTV is essentially an articulated steering, double-ended dump truck. The vehicle moves on four wheels and has two identical chassis halves. Each half consists of a chassis frame, a material bucket, two wheels with integral curvilinear synchronous motors, a fuel cell and battery arrangement, an electromechanically actuated dumping mechanism, and a powerful microprocessor. The vehicle, as designed, is capable of transporting up to 200 cu ft of material over a one mile round trip per hour. The LMTV is capable of being operated from a variety of sources. The vehicle has been designed as simply as possible with attention also given to secondary usage of components

    Summary of results of NASA F-15 flight research program

    Get PDF
    NASA conducted a multidisciplinary flight research program on the F-15 airplane. The program began in 1976 when two preproduction airplanes were obtained from the U.S. Air Force. Major projects involved stability and control, handling qualities, propulsion, aerodynamics, propulsion controls, and integrated propulsion-flight controls. Several government agencies and aerospace contractors were involved. In excess of 330 flights were flown, and over 85 papers and reports were published. This document describes the overall program, the projects, and the key results. The F-15 was demonstrated to be an excellent flight research vehicle, producing high-quality results
    corecore