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ABSTRACT

This paper contains sample calculations and a desc~iption

of the plastic design of a square knee for a single-span rigid frame.

Welds are designed using the concepts of plastic design as well as

those of elastic design in order that the parallelisM can be seen.

The methods of design presented here can be used as a guide in de­

signing cOMparable connections fOr rectangular portal frames. A

theoretical analysis of a straight knee with diagonal stiffeners i$

also presented and leads to expressions for the reinforcement required

within the knee to prevent undue deformation. A further ana~Y8is is

made of the rotation and deflection of the connection;



TABLE or CONTENTS

I. INTRODUCTION

11. SAMPLE DESIGN OF fA. 'WU)JU) CORNER CONNECTION
., .. ·:.r"···•. ·,...'...

2.1 Sele~tion of Member
2.2 Require" JleinfoJ:~ement

2.3 't1,1d Ho.nt and Axial Force
2.4 )Codification ot Plastie Homent; due to Axial Force
2.5 Sh~ar Stre$$ Without Web Reinforcement
2.6 Shearing stress at Ult~te L4.d with Diagonal Stiffener
2.7 Rotation of the Knee at Yield
2.8 Deflection between End Itn8 at the Yield Lo~

2.9 El-.tlc ~$lgn of Welds
2.10 Plastic Design of We148

ItI. ,ANALysts 01 $'J.'RAIGHT KNEES WXTH nXMONAL STII'FENER$

:B. 1 Diagonal Stiffeners ~or Straight Connections
3.2 Rotation Analysis of Straight !nees with Diagonal Stiff,ner.



",1
r':;

\

"

1. INTRODUCTION

Several corner connections were designed to be used as test

specimens for a program on Welded Continuous Frames and Their Co~onents

carried out at Lehigh University. (1) The object of this series of tests

was to dete~ine whether connections made from a range of sizes of rolled

shapes would have similar behavior, verifying that the fundamental prin­

ciples of plastic design apply regardless of the size of member joined

in a connection. The corner connecttons were all of a square type which

would be typical in a flat-roofed rigid frame building. The results

of the tests were satisfactory, and verified the design principles.

This paper presents in detail a sample design of one of the

large connections in the ser~es. The analysis of the loads and de-

formations in both the elastic and plastic ranges is given as well

as the deslgn of welds and details by elastic and plastic design

methods.

The analysis of s~raight knees containing diagonal stiffeners

is developed in the latter portion of this report. It contains an

analysis leading to the requited thickness of the knee web. When the

web is found to be deficient, it is necessary to prevent the occurrenc~

of excessive deformation due to the high shear stresses that are present.

Therefore. the development of an analysb leading to the required diag­

onal stiffener thickness 1s given. Finally, derivations of the defor-

mations and rotations that occur in straight knees with diagonal

stiffeners are shown.
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Sample calculations ftom the 4esi8n of • stra1ghtcornet cQQnection

.to cletermi~e Jnembell' size. wel) reinfoll'ce$nt 11114 welds ate given in this

section. An analysis 1s a18o~4e to determine the stresses an4 theoret­

ical deformations. These c$.lculation. use the equations and concepts

given in Refe....ence 1 and handbook propertiee ftom the AIU; C Handbook.

2.1 SUCTION or HEMBER

Assume frOUt the geo_try Alld statics of the 8tt\lct;:ure being

desip$d. th&t the forces ahOlftlin rig 1 are known to be acti~ on

the knee.

'!'be required plastic Il10dulus is found ffOm

M... = 9000·z. ::E.
fJy 33

= 273 in3

Whete MP is the plastic moment. $nd fJy the yield St~8S

use 24WF100 (Z • 278.3 in3)
S :II 248.' in3
d = 24.0 in
w a 0.468 in
t = 0.584 in

2.2 REgUIRED B.ElN!ORCHNT

Ttle recll.lired web thickness 18 obtained from

wr • ill
\i:ll: 248.9

= 242

Giving: = 0.149 in '7 0.468

Henee, a diagonal stiffener 18 required. The thicknes$

••• (1)

... (2)
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of this stiffener is obtained" from

t s =G (! _ wd ")
b d fi

~ (248.9 _ (0.468)(24»
12\ 24 i~

.. 0.457 in.

Used 3/4 in Bk~e

••• (3)

-3

Equations 2 and 3 are developed in the section titled: Analysis of

straight knees with diagonal stiffeners.

2.3 YIELD 1'DMENT AND AXIAL FORCE:

For purposes of analyzing the knee tested, it was necessary

to obtain additional stresses and forces acting on the entire structure.
dlr'l'"l."'s;oY\

Fig. 2 shows the proportions of the test connection. The dhUlloe "a"
~ed'''''~IIlc.e

isAto an assumed inflection point.

The yield moment is found from

My = ayS

=33 x 248.9

=8,210 in-kips

The plastic moment of the section is found from

9,170 in-kips

• •• (4)

• q (5)

To determine the allowable axial force at first yield, the

combined bending and axial force formula is used

• •• (6)

"Th~xefore:

Py = ~~3;:;..3r_22~:::--
1 96

29.43 + 248.9



CI 111. 4 kips

The moment at the haunch can than be determined by statics as:

-4

p
=::.:2. (a + d/2)n
= 111.4 x 108

t2
• 8,500 in-kips

.••• (7)

2.4 IvDDIFICATION OF PLASTIC H>MENT DUE TO AXIAL FORCE

The modified plastic moment is found by determining the

interaction between the plastic moment, Hp, of the section and the

reduction due to axial load. The axial load is assumed to be carried

by a small area of web near the centroid of the section. An ultimate
~

value of P is assumed from which the depth of web, ya, (Fig. '3) re-

quired to support the axial load is found.

As an examp1ej assume P = 135 kips; then:

y • P
a 12'way

= 135
'iT x 33 x 0.468

• 6.18 inches

••• (8)

The plastic modulus of this area is the first moment of the area.

lienee:
Z · w Y 2a· a

4 ••• (9)

Therefore, the bending moment of the area carrying the axial load is

M.. • a Z
Q Y a

• 33 x 0.468 x 6.182
4

= 144.3 in-kips

Hence, the reduced plastic moment is

MpC =~ - Ma
... 9,170 - 144

=9,026 in-kips

••• (10)

••• (11)
\
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From s tatics

Pu all Mpc
a

=[2 x 9,026
96

... 133 kips

Next assuming Pu ... 133 kips and repeating the process gives from

statics:

Pu ... 133 k

2.5 SHEAR STRESS WITHOUT WEB REINFORCEMENT

•• ~ (12)

-5

The shear stress on a knee without reinforcement can be

obtained by noting that the shear stress is ~ D~, wher~ Fo is the

flange force as obtained in the chapter, "Analysis of Straight Knees

with Diagonal Stiffeners"

Hence:

'f
Y

(l - d/L) ••• (13)

... 8500
0.468 x 242

=24.25 ksi

(1 - 24/108)

••. (14)

This exceeds 0.578 0y therefore additional reinforcement is required.

The shear stress at the ultimate load is
Mp

~u .....~.....::.2 (1-d/L)
wd2

from statics we obtain

P
M.. ... .J! (a + d/2)
-~(p) 2

Hence:
'fu '" 10,150 (1 - 24/108)

0.468 x 242

Giving:

T
U

... 29.2 ksi

.~"" ' - - - ...



2.6 SHEARING STRESS AT ULTIMATE LOAD WITH DIAGONAL STIFFENER

. The shearing stress on a knee with a diagonal stiffener is
\ o..+~Y" ~ +hIS Y"l"po.(t

developed t:B t' f rb)\IlIi~p4iH.

Hence: T D K3 Mh~P) (1 - d/L) G ••• (15)

-6

Where

1
D 3

0.468 x 11.5 x 103 x 24 + 0.75 x 1125~X 30 x 10

... 0.453 x 10-5/kip

HeBee;

~eY"e~Y"e.1 T ~ 0.453 x 10.5 x 10 150 (1-24/108) 11.5 x 103
24 '

... 17.15 kai

2.7 ROTATION OF THE KNEE AT YIELD

The rotation at yield is given by

. 9 = Mr(y) (L-d) {~ + (1 + K2 ,
Y d (L-d/2)~ 3 E A

f

where Me (y) is the moment at the junction of rolled beam and

. connecdon

••• (16)

Bence:

and

~(y)
... p a

y ~

=111.4 x 96
f2

.. 7,580 in-kips

Giving:

= 1
1 + 2''12 x 0.468 x 24 x 11.~ x 103

0.75 x 11.53 x 30 x 10
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Therefore:

9 = 7.580 (108-24) (0 453 10-5 +
Y 24 (108-12) (. x

(l + 0.458) ~

12 x 0.775 x 30 x 103 )

Givins:

9y =0.00269 radians

The rotation analysis of straight knees with diagonal'

stiffeners is developed in the following chapter.

2.8 'DEFLECTION BJlIWUN END PINS AT THE YIELD LOAD

as shown in ,ig 2, it was desirable for comparison't71th experimental

results, to predict the defl~ct10n of the legs in th~ direction of th~

loads. EVe:n'though this calculation would not btl D.eEi)decl in the design: ie',,', .:

of a portal frame, it 1s shown here.



The deflection yield is

8 =.J2 ( ~, a
2 + 9L t)

y \& ~ 3El 2

I
~) jj'"" _,_ J _ t

••• (17)

fa...

Hence:

8 Cl)2 ~ 7.580 x 962 + 0.00269 x 108 1.
1y ( 3x30x103x 2987.3 2

Giving:

8y Cl 0.584 inches

2.9 ELASTIC DESIGN OF WELDS

These welds are proportioned to follow Section 15 of

the AISC Specification at a load at which the maximum combined

stress in the rolled section at the edge of the connection is

20 kei. From the combined bending and axial force formula the'

load at this stress 1s found to be ~!~?_~ips and the bending
-'~ )

moment at the rolled section would be 4590 in-kips. )

f- '.
:

" -'

~

l} lU1et !leld.:f~\t~~1QfD!iI(irlateto 118o&e. of C01r-:<rtg;fl

!
Since the flange force must be transferred to the end plate, I ~__ .',

(Fig. 4) the area of weld required is

--~ I --------..
{ )

i___ f
-~-----_J



••• (18)

A m Flange Force =Allowable Elastic Stress x Plate area
13.6 Allowable Weld Stress

=20 x 12 x 0.775
13.6

=13.68 in2

Hence the total length of weld required is

-8

L CI Area Weld
0.707 D

Giving:

D =3/8 in; L =51.6 in.

D co 1/2 in; L co 38.7 in.

••• (19)

It is evident that too great a length of lap joint is required using
t.,,'('t,

fillet welds. There~as a matter of economy a butt weld would be more

suitable to use. -,
I,

.: These welds must develop the combined stresses due to bending,

the axial load component and the shear force from the transverse com-

ponent of load.

The tensile or compressive direct stress on' the weld is

O'D co P/A'f2

O'D co 67.5
f2 x 24.98

a 1.622 ksi

The direct force per inch of weld is then:

f D ... at> ¥
... 1.622 x 0.468

2

.. 0:33 kips/in

The maximum force per inch due to bending in the web (Fig. 6) is:



whei;'e

and

Mf C2 F(d-t)

~1 = 4.590 - 186 (24-0.775)

Giving:
Mw =280 in-kips

Hence:

3 x 280
= 22.452

.., 1.664 kips/in

The force per inch per line of welding due to shear

Hence:

f m 67.5
v 2·\Tx 22.45

Giving:
r:: 1.062 kips/in

The resultant f.)rce vector is then

R 0 \-i~ f + f ) 2 + f 2V' D m v

R =V<1. 664 + 0.38) 2 + 1.0622

'"' 2.30 tips/in

Hence the size fillet weld required is

D ... R
0.707 x 13.6

= 2.30
0.707 x 13.6

"" O. 24 inches

Nominal Size 11:I 1/4 in.

••• (20)

-9
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The force in the diagonal stiffener is given by

Fa =f2 K2 x Flange Fo~ce

Hence:

Fe =f2 x 0.458 x 20 x 0.775

=: 106.6 kips

••• (21)

This force is obtained by noting that Fl :I K
2

Fo (eq 5d.-) as developed

intthe following chapter.

The force per inch of weld is then

Fa.,. --=--
2b - w

o 106.6
24-0.468

Giving:

0= 4.61 kips/in

Therefore,the size fillet weld required is

D = Force per inch
13.6 cos 22.50

"" 4.6:.;:1:..-. _
13.6 x 0.9239

Giving:

= 0.367 inches

Nominal Size =3/8 in.

••• (22)

The minimum fillet weld provisions of the AWS Building Code

were followed in selecting the welde between the diagonal stiffener and

beam web.

These welds are designed to transmi t -tne~elas tic flangti force

of the column into the web of the beam by shear.

Hence. size of fillet weld required is
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D &1:1 F1anse Force
2(d-2t) 13.6 x 0.707

Therefore:

D &1:1 20x 12 x 0.775
2 x 22.45 x 13.6 x 0.707

Giving:

&1:1 0.431 inches

-ll

••• (23)

develop the elastic flange force when the corner was subjected to an

opening corner load condition.

The size fillet we1d.required is

......

D &1:1 F1anseForce
,(2b-w) 13.6 x 0.707

= 20 x 12 x 0.775
(24-0.468) 13.6 x 0.707

Giving:

0.823 inches

Nominal Size = 7/8 in•

••• (24)

These welds are obt~ined by assumrng that the maximum P9~~ible
. l:;~:~

flange force must be horne!by the beam web and stiffener and that the

concentrated load 'is distributed to the web on planes bounded by 450 angles

'from the point of application of load.

The allowable compressive force to be carried by the web is

Pw &1:1 24w (t + 2k)

=24(0.468) (0.775 x 3.125)

=43.8 kips

••• (25)
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Hence, the force to be carried by the vertical stiffener is

Fs ... PF - Pw

where PF is the flange force

P
F

m allowable plate stress x plate area

PF ... 20 (12) (0.775)

= 186 kips

Therefore:

F III 186 - 43.8
s

"" 142.2 kips

Therefore, the size fillet weld required is

Nominal Size

D III Fs
4 x 0.707 x 13.6 (d/2 - k )

• 142.2
4 ~ 0.707 x 13.6 (12 - 1.56)

... 0.332 inches

.:. 3/8 in.

••• (26)

2.10 PLASTIC DESIGN OF WELDS, _\ ".

In this section, the sizes of welds necessary to meet the

requirements of section 12 of Reference 1 at the maximum load of the

:-connection are calculated.

i)lOJl>&d.ble riUe~ W~ld" fo'r LAp Joint"ofEUd Plate to Flanse ()~umn (Fig 4)
~ .,0. ,.

The length of lap joint required to transfer the plastic flange

force is obtained as follows:

Area of weld required is:

A ... Flange Force ... Yield stress x Plate Area
Allowable Weld Stress 22.4

••• (27)

"" ...1Ql
22.4



Gives:

... 13.7 in2

Hence the length of the weld required is:

Area
L ... 0.707D

Therefore:

••• (19)
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D ... 5/16 in;

D ... 7/16 in:

L ... 62.0 in

L ... 44.3 in

A butt weld is found to be more suitable in this case.

:;.~(j Column lfeb Fill~~ W~ld ,tq, Be~rlange(rig5), ;'
-.j. . • . A .--. -'

" -, -, ,- -.' ,',', Ii':"

Theeewe1ds are designed to 'develop the cOmbined

fotces 'of :b'e~~1n8'" :th~ '~st s~V:~i-e '~:i.~1 load (corilponerit;'in

and the ~hee.r 'forie 'from the tran~ve~~~'comporient'~f load.

tena:t.te
.'

the wab

The

direct tensile or contp'ressl'O~ f~rce 'per i~chof\f~ld d~-to :EUttal---,----­
\m~ .~nd bendinz is:

f D ... 33 w/2
\

... 33 x 0.468 '
2

Gives:
<:I 7.72 kips/in

Force per inch due to shear

f ... fi Pu
v 4(d-2t)

... 133
2·~t x 22.45

Gives:
co 2.1 kips/in

Therefore resultant force per inch

R "'\/f 2 + f 2,D v

Gives:
"" 8.0 k/in



However:

D 1:1 R
0.707 x 22.4

:0 8.0
0.808 x 22.4

Gives:

1::1 0.508 inches

Nominal Size ct 9/16 in•

••• (28)

-14

.~ r~rty-Five Degree Fillet .Welds to EtlC,is' 9£ 1.>1~onal Stiffener (~g 7)

The force in the diagonal stiffen~r is obtained as

.r.:= \2 x 0.458 x 33 x 12 x 0.775

Give~:

=176.4 kips

Hence from

D == Fs
o

22.4 x 2 (b-w) cos 22.5

"" 176.4
22.4 x 2 (12-0.468) 0.9239

We ob.tain:
=0.370 inches

Nominal Size "" 3/8 inches

••• (21)

••• (29) .'

~~ lCFUI~~.tl~:J,.d~f(lr En.dPlate to. Beam Web(Fi& 8) ~

The welds must transmit the pl•• tic flange force from the'

column into the beam web by shear.

The plastic flange force is

PF IlIl (:1y bt

1:1 33 x 12 x 0.775

Gives:

PF CI 307 kips



Therefore; size fillet weld required is

P.,
D 1:1 ~~~~~~~--:"~~_

0.707. x 22.4 x 2 (d..2t)

1:1 307
0.707 x 22.4 x2 x 22.45

Gives:
1:1 0.434 inches

,'.' .. ".'/,,-, ....'"

••• (30)

..15

load condi tion.

Required size of fillet weld is

D 1:1 . Flange Force
0.707 x 22.4 (2b-w)

1:1 307
0.707 x 22.4 x 23.53 .

Gives:
1:1 0.829 inches

NoDdnal Size 1:1 7/8 inches

••• (31)

Flange force to be carried by the web is

P 1:1 cry w (t + 2k)w .

. 1:1 33 it 0.468 (0.775 + 3/125)

Gives:
1:1 60.2 kips

Hence, the force in the vertical stiffener is

••• (32)



... 307 - 60.2

Gives:
... 246.8 kips

Therefore}size fillet weld required is

FsD ... -:---~=......::~:"""":"'--:-~~'::""
4 x 0.707 x 22.4 (d/2-k)

Therefore: '

D ... 246.8
4 x 0.707 x 22.4 (12-1.56)

Gives:
... 0.350 inches

Nominal Size ... 3/8 in.

3. ANALYSIS OF STRAIGHT KNEES WITH DIAGONAL STIFFENERS

Two analyses are considered in this section:

-16

••• (33)

(1) an analysis leading to a required thicknesR of

diagonal stiffener ~o prevent undue deformation

of the knee web due to shear force, and,

(2) an analysis of the rotation and deflection of

a straight knee with diagonal stiffeners.

3.1 DIAGONAL STIFFENERS FOR S'lRA1GBT CONNECTIONS

'0
",
'.,

From Reference 2 and referring to Fig. 11

F0 llll ~ (l - d/L)

where ~ ... moment at point H

a ... depth of section

.... (34)

L u length of connections leg

The desired moment at point H is tip. 'Therej"~~uat1on 34 becomes

F0 ... C1aZ (1 - d/L) .••.• (35)

Since the force F must be resisted by the web in shear,
a

the magnitude of the shear stress is:



/

noting that

We·obtain

I\J °yZ~ __ (l-d/L)
'" wd6

Z := fS

••• (36)

••• (37)

-17

However, since f is slightly greate~ than unity and the qu~ntity

(l-d/L) is sUghtly less, their product 1s approxttl1Qtely t;!qual to

unlty. Therefore:

= :~
'\I a

However, to p cannot e~ceed ~

Hence:

Bence:

'.

•• ~ (38)

••• (39)

If the requited web thickness, wr ' is greater than that of

the rOlled section, it is necessary to provide a diagonal stiffener.

The force Fo is theD resisted n by the web acting in shear and the

diag~n41 stiffener acting in compression. The shesr ~eslstance of

the web, 'w» is given by
a

J!w =if' wd ••• (40)

(where w =the thickness of the web) and the resistance



of the diagonal stiffener is given by

-18

Since F0 = F,! + Fs' then from equations 35, 4Q a~d 41

0yZ ~ Oy
d (l - d/J:..) '" -\ 3 wd + \i bts

Solving this equation for t e ,

Since Z =fS, and since the quantity f (1 - d/~) is very nearly

equal to 1.0, equation (43) reduces, final~y to

t ::: 11 (S Wd')
S b d -,'(3

••• (41)

••• (42)

••• (43)

••• (3)

which gives the required thickness of diagonal stiffener in order

that the connection be capable of resisting the plastic moment, ~,

applied at the intersection of neutral lines of the beam and girder.

3.2 ROTAnON ANALYSIS OF STRAIGHT KNEES ,-lITH DIAGONAL SnFFENERS*

The rotation of the knee is made up of two parts:

1) Rotation due to shear, designated as 'bA, and

2) Rotation due to bending, designated as ~ •

Since comparisons are made with experimental~y deterndned rotation value~

.. - •• I .~

there is a third component to be considered if the measurement is made at

a point other than at the precise end of the connection:

3) Rotation due to bending of the rolled section over the

length, r, between the '!nd of the knee and point of

ro cation measurement, designated as 9r •

Hence the total knee rotation is 0 ut..~ .. Or

*Based in part on Reference 3, Appendix A.

••• (44)
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Two different approaches were used in Reference 2 to predict

the moment-rotation characteri$tics of straight knees with diagonal

stiffeners. It is the purpose of this section to refine the solution of

this problem.

Rotation due to shear in the square knee ABC D (Fig. l2)

reinforced with diagonal stiffeners will be found by making the same assumption

that was implied in section (3.l}~·ahu4¥V the flange force Fo is resisted

in part by the knee web and in part by the component of thrust from the

diagonal stiffener AC. Thus in Fig. l3a although the decrease in stress

is linear from D to C, the flange at point C retains a stress of magnitude

Fl/A,. The resultant force is transmitted to the diagonal stiffener.

The problem to be solved, then, is the relation between the

force F2 transmitted by the exterior flange to the web due to shearing

action (represented by the triangular distribution in Fig. l3a) and the

force Fl transmitted to the diagonal stiffener. Thie may be done by

connecting the continuity condition at point C; then the moment-shear

deformation relationship may be developed.

Consider the plate ABC D with diagonal stiffener and loaded

with end compressive forces, P, as shown in Fig. l3b. This simulates

the loading applied to the stiffener by the flange force Fl. Fig. l3c

shows the shear stresses acting on the web, the stresses introduced by

the flange force F2• The variation in normal stress along the stiffener

due to the loading of Fig. l3b would resemble Fig. 144; the stress will

decrease toward the center of the plate as the stiffener transmits load

to the plate by shear. On the other hand, the shear loading of.Fig. 13c

will cause stresses along the stiffener somewhat like those of Fig. l4b.

Normal stresses will gradually increase towards the center of the stif­

fener. When the two loadings of Figs. l3b and l3c are added together



to give the loading due to the flange force, Fo ' it will be assumed that

the resultant stresses in the stiffener are uniform as shown in Fig. l4c.

It will be assumed that the web plate remains in a state of pure shear and

the contraction along line AC of Fig. l3c will thus remain uniform.

Since the total shortening of the stiffener must equal the

contraction due to the shear stresses in order that the continuity con-

dition be satisfied, then in the general case (referring to Fig. 15)
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a1 E w(x)
o

dx ••• (45)

where the subscripts wand s refer to web and stiffener, respectively.

According to the assumptions made above, equation 45 reduces in this
(4)

.problem to 11
••• (46)

where the subscripts wand s have been drmpped, being uniform and

equal along line AC. Now

and

••• (47)

••• (48)

Therefore, from equations 46, 47 and 48

or

••• (49)

But

Fl + F2 = Fo

and therefore, if we let

K1 ... 2AwG i2/AsE

••• (50)

••• (51)
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~

then

F
l

+ K
1

F
l

r:s Fo

or

where

K 0= 1 e;;;:,
2 1 + 2AWG ';t'

AsE
Similarly,

F2 <= (l-K2) '0
The rotation of the knee due to these forces is equal tot.
Since

Fo =~ (~ - 1)
L d

Then equations 54 and 55 and the first of equations+7 and 48 may

• •• (52)

••• (5.3)

••• (54)

• •• (55)
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be used to deterRdne the moment-deformation (shear) relationship.

Making the substitutions,

where

••• (56)

1

• •• (57)

Accotding to assumptions made above, the extension of the flanges,

~ , will be given by

Using Fig. 16, the total l~ending" rotation at the knee is

I!J 0= 2 9 == a§.o= O'D + O'c
I a d E

Now from Fig. lJa and equation 52

••• (58)



e/
and from Fig. 13& and@quation 55·

~ La 1:1 - (- - 1)D LA d
F

Then the total bending rotation is given by
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••• (59)

••• (60)

The rotation 9r • due to flexure of the rolled section over

lengths~ia given by

9r &:I if (2r - r 2/a)

therefore

9r &:I!h (1 - 1/2L) (2r - r 2/a)
. EX

••• (61)

When r is emall) the tera r 2/a may be neglected. Then the total rotation

is given by a summation of the values determined from equations (561 (59)
(

and (61) or

9 ". t+ ~ + 9r

9 =K3 ~ (I-d/L) + (1+K2)~ (1 - d/L)
d A,dE

+~ (1 - d/2L) (2r - r 2/a)

9 =~ (l-d/L) {~+ (l+K2)
(1-d/2L) 1 d ArdE

+ (l - d/2L) (2r'" r 2/a) f
(l-d/L) EX \

The deflection between the end pins of the knee can be

••• (44)

••• (62)

••• (63)

found by considering the deflection due to the rotation of the knee from

the shear and bending deformations, as well as the deflection due to

flexure of the rolled section over a length "a".

Bence:

tM 2
8&:1'~ ra+

I" 3EI ••• (17)



.,' ,."; -'

The results of this analysis of shear and bending deformations

are compared with experimental results for two tests using WF shapes of
~18

widely differing geometry in Fig~.l7A The initial portion of the moment

rotation curve of Connection L from Reference 2 is shown in Fig. l7~,

equation (63) being used to plot the theoretical curve shown by the
/' Ie

dotted Une. In tig... is a similar comparison using the J;'esults of

a frame test~ with an 8Wl 40 shape. In the second case, load is plotted

against the total rotation of the knee.

-23

In view of the agreement between theory and test of two markedly

different cross-sections, this analysis affords a satisfactory explanation

of experimental behavior.
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FIG 3 CROSS-SECTION SHOWING AREA CARRYING AXIAL FORCE



FIG 4 FILLET WELDS FOR END PLATE TO COLUMN FLANGE LAP JOINT

j



FIG 5 COLUMN WEB TO BEAM FLANGE WELD
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FIG 6 RESISTING MOMENT OF WEB



FIG 7 WELDS AT ENDS OF DIAGONAL STIFFENER ANB
BETWEEN BEAM WEB AND STIFFENER



FIG 8 JnEAM WEB TO END PLATE FILLET WELDS
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FIG 9 WELD BETWEEN COLUMN AND BEAM FLANGES
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FIG 10 WELD BETWEEN BEAM WEB AND HALF-DEPTH STIFFENER
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TYPICAL STRAIGHT KNEE
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FIG 14 VARIATION IN STRESS ALONG DIAGONAL STIFFENER



FIG 15 DEFORMATION OF KNEE WEB PLATE
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