953 research outputs found

    Expanding the expressive power of Monadic Second-Order logic on restricted graph classes

    Full text link
    We combine integer linear programming and recent advances in Monadic Second-Order model checking to obtain two new algorithmic meta-theorems for graphs of bounded vertex-cover. The first shows that cardMSO1, an extension of the well-known Monadic Second-Order logic by the addition of cardinality constraints, can be solved in FPT time parameterized by vertex cover. The second meta-theorem shows that the MSO partitioning problems introduced by Rao can also be solved in FPT time with the same parameter. The significance of our contribution stems from the fact that these formalisms can describe problems which are W[1]-hard and even NP-hard on graphs of bounded tree-width. Additionally, our algorithms have only an elementary dependence on the parameter and formula. We also show that both results are easily extended from vertex cover to neighborhood diversity.Comment: Accepted for IWOCA 201

    Ventromedial Frontal Lobe Damage Disrupts Value Maximization in Humans

    Get PDF
    Recent work in neuroeconomics has shown that regions in orbitofrontal and medial prefrontal cortex encode the subjective value of different options during choice. However, these electrophysiological and neuroimaging studies cannot demonstrate whether such signals are necessary for value-maximizing choices. Here we used a paradigm developed in experimental economics to empirically measure and quantify violations of utility theory in humans with damage to the ventromedial frontal lobe (VMF). We show that people with such damage are more likely to make choices that violate the generalized axiom of revealed preference, which is the one necessary and sufficient condition for choices to be consistent with value maximization. These results demonstrate that the VMF plays a critical role in value-maximizing choice

    Parameterized Approximation Schemes using Graph Widths

    Full text link
    Combining the techniques of approximation algorithms and parameterized complexity has long been considered a promising research area, but relatively few results are currently known. In this paper we study the parameterized approximability of a number of problems which are known to be hard to solve exactly when parameterized by treewidth or clique-width. Our main contribution is to present a natural randomized rounding technique that extends well-known ideas and can be used for both of these widths. Applying this very generic technique we obtain approximation schemes for a number of problems, evading both polynomial-time inapproximability and parameterized intractability bounds

    On the Computational Complexity of Vertex Integrity and Component Order Connectivity

    Full text link
    The Weighted Vertex Integrity (wVI) problem takes as input an nn-vertex graph GG, a weight function w:V(G)Nw:V(G)\to\mathbb{N}, and an integer pp. The task is to decide if there exists a set XV(G)X\subseteq V(G) such that the weight of XX plus the weight of a heaviest component of GXG-X is at most pp. Among other results, we prove that: (1) wVI is NP-complete on co-comparability graphs, even if each vertex has weight 11; (2) wVI can be solved in O(pp+1n)O(p^{p+1}n) time; (3) wVI admits a kernel with at most p3p^3 vertices. Result (1) refutes a conjecture by Ray and Deogun and answers an open question by Ray et al. It also complements a result by Kratsch et al., stating that the unweighted version of the problem can be solved in polynomial time on co-comparability graphs of bounded dimension, provided that an intersection model of the input graph is given as part of the input. An instance of the Weighted Component Order Connectivity (wCOC) problem consists of an nn-vertex graph GG, a weight function w:V(G)Nw:V(G)\to \mathbb{N}, and two integers kk and ll, and the task is to decide if there exists a set XV(G)X\subseteq V(G) such that the weight of XX is at most kk and the weight of a heaviest component of GXG-X is at most ll. In some sense, the wCOC problem can be seen as a refined version of the wVI problem. We prove, among other results, that: (4) wCOC can be solved in O(min{k,l}n3)O(\min\{k,l\}\cdot n^3) time on interval graphs, while the unweighted version can be solved in O(n2)O(n^2) time on this graph class; (5) wCOC is W[1]-hard on split graphs when parameterized by kk or by ll; (6) wCOC can be solved in 2O(klogl)n2^{O(k\log l)} n time; (7) wCOC admits a kernel with at most kl(k+l)+kkl(k+l)+k vertices. We also show that result (6) is essentially tight by proving that wCOC cannot be solved in 2o(klogl)nO(1)2^{o(k \log l)}n^{O(1)} time, unless the ETH fails.Comment: A preliminary version of this paper already appeared in the conference proceedings of ISAAC 201

    The Claims Culture: A Taxonomy of Industry Attitudes

    Get PDF
    This paper presents an analysis of a familiar aspect of construction industry culture that we have dubbed 'the claims culture'. This is a culture of contract administration that lays a strong emphasis on the planning and management of claims. The principal elements of the analysis are two sets of distinctions. The first comprises economic and occupational orders, referring to two kinds of control that are exercised over the construction process; predicated respectively on economic ownership and occupational competence. The second refers to contrasting attitudes towards relationships and problem solving within these orders: respectively 'distributive' and 'integrative'. The concepts of economic and occupational order entail further sub-categories. The various attitudes associated with these categories and sub-categories are described. They are assessed as to their consequences for change initiatives in the industry

    Measures of nutrient processes as indicators of stream ecosystem health

    Get PDF
    To better understand how freshwater ecosystems respond to changes in catchment land-use, it is important to develop measures of ecological health that include aspects of both ecosystem structure and function. This study investigated measures of nutrient processes as potential indicators of stream ecosystem health across a land-use gradient from relatively undisturbed to highly modified. A total of seven indicators (potential denitrification; an index of denitrification potential relative to sediment organic matter; benthic algal growth on artificial substrates amended with (a) N only, (b) P only, and (c) N and P; and delta N-15 of aquatic plants and benthic sediment) were measured at 53 streams in southeast Queensland, Australia. The indicators were evaluated by their response to a defined gradient of agricultural land-use disturbance as well as practical aspects of using the indicators as part of a monitoring program. Regression models based on descriptors of the disturbance gradient explained a large proportion of the variation in six of the seven indicators. Denitrification index, algal growth in N amended substrate, and delta N-15 of aquatic plants demonstrated the best regression. However, the delta N-15 value of benthic sediment was found to be the best indicator overall for incorporation into a monitoring program, as samples were relatively easy to collect and process, and were successfully collected at more than 90% of the study sites

    Conjunctions of Among Constraints

    Full text link
    Many existing global constraints can be encoded as a conjunction of among constraints. An among constraint holds if the number of the variables in its scope whose value belongs to a prespecified set, which we call its range, is within some given bounds. It is known that domain filtering algorithms can benefit from reasoning about the interaction of among constraints so that values can be filtered out taking into consideration several among constraints simultaneously. The present pa- per embarks into a systematic investigation on the circumstances under which it is possible to obtain efficient and complete domain filtering algorithms for conjunctions of among constraints. We start by observing that restrictions on both the scope and the range of the among constraints are necessary to obtain meaningful results. Then, we derive a domain flow-based filtering algorithm and present several applications. In particular, it is shown that the algorithm unifies and generalizes several previous existing results.Comment: 15 pages plus appendi

    The Ursinus Weekly, April 12, 1954

    Get PDF
    M. L. Williams\u27 royal decision is May Pageant • Tour completed by Meistersingers • Spring concert will be Music for you • French clubbers to enjoy Proust readings, games, eats • U.C. alumnus Rocky Davis graduates from N.O.C.S. • May 6, 7, 8 Curtain Club comedy, The Man who came to dinner • Group 4 to give comedy Friday for luck April 13 • Dr. K. Schoonover to speak Wed. on Islamic culture • Shepard talks on medical illustration • Wright, Holcombe, Burns, Welsh head U.C. spirit group • Matlaga, How, Frankenfield elected \u2755 Y M officers • Band to present twilight concert this May Day • Sorority activities center around Easter season • Juniors choose as prom theme Hasu Kisama • Jean Walker visits campus, speaks on Christian living • Chi Alpha elections to be held tomorrow night • MS-WSGA joint committee to plan potential honor system for U.C. • Former Ursinus College professor dies • Eternal schism • WSGA spoke at meeting • MSGA penalizes water battlers • A Don\u27s one word more • Collegeville-Trappe story: A brief history • 14 racketmen out to better \u2754 court log • Femme scribe views Spring a la sports • Jane Skinner \u2755 is swimming captain • Batsmen blast Albright 6 to 1; Ehlers fans 8 in mound debut • Siebmen lose to PMC 2-1; Edge Johns Hopkins 7-5 • Dawkins, Paolone co-captains; Padula cited most valuable • Sports scribe scans cinders, baseball bits • Miss Snell\u27s softballers hit Swarthmore April 28 • Intramurals begin today on diamonds • Ace Bailey announces names of 17 lettermen • Soph hop success • Letters to the editor • Debating team boasts a winning percentage • Irish scholarship qualifications told • May Day practice schedulehttps://digitalcommons.ursinus.edu/weekly/1494/thumbnail.jp

    Statistical Inference in a Directed Network Model with Covariates

    Get PDF
    Networks are often characterized by node heterogeneity for which nodes exhibit different degrees of interaction and link homophily for which nodes sharing common features tend to associate with each other. In this paper, we propose a new directed network model to capture the former via node-specific parametrization and the latter by incorporating covariates. In particular, this model quantifies the extent of heterogeneity in terms of outgoingness and incomingness of each node by different parameters, thus allowing the number of heterogeneity parameters to be twice the number of nodes. We study the maximum likelihood estimation of the model and establish the uniform consistency and asymptotic normality of the resulting estimators. Numerical studies demonstrate our theoretical findings and a data analysis confirms the usefulness of our model.Comment: 29 pages. minor revisio
    corecore