10,106 research outputs found
Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations and -decay half-lives
The self-consistent quasiparticle random-phase approximation (QRPA) approach
is formulated in the canonical single-nucleon basis of the relativistic
Hatree-Fock-Bogoliubov (RHFB) theory. This approach is applied to study the
isobaric analog states (IAS) and Gamov-Teller resonances (GTR) by taking Sn
isotopes as examples. It is found that self-consistent treatment of the
particle-particle residual interaction is essential to concentrate the IAS in a
single peak for open-shell nuclei and the Coulomb exchange term is very
important to predict the IAS energies. For the GTR, the isovector pairing can
increase the calculated GTR energy, while the isoscalar pairing has an
important influence on the low-lying tail of the GT transition. Furthermore,
the QRPA approach is employed to predict nuclear -decay half-lives. With
an isospin-dependent pairing interaction in the isoscalar channel, the
RHFB+QRPA approach almost completely reproduces the experimental -decay
half-lives for nuclei up to the Sn isotopes with half-lives smaller than one
second. Large discrepancies are found for the Ni, Zn, and Ge isotopes with
neutron number smaller than , as well as the Sn isotopes with neutron
number smaller than . The potential reasons for these discrepancies are
discussed in detail.Comment: 34 pages, 14 figure
High-precision laser spectroscopy of the CO A - X (2,0), (3,0) and (4,0) bands
High-precision two-photon Doppler-free frequency measurements have been
performed on the CO A - X fourth-positive system (2,0),
(3,0), and (4,0) bands. Absolute frequencies of forty-three transitions, for
rotational quantum numbers up to , have been determined at an accuracy
of cm, using advanced techniques of two-color 2+1'
resonance-enhanced multi-photon ionization, Sagnac interferometry,
frequency-chirp analysis on the laser pulses, and correction for AC-Stark
shifts. The accurate transition frequencies of the CO A - X
system are of relevance for comparison with astronomical data in the search for
possible drifts of fundamental constants in the early universe. The present
accuracies in laboratory wavelengths of may be considered exact for the purpose of such comparisons.Comment: 13 pages, 6 figures, The Journal of Chemical Physics (2015) accepte
-decay half-lives of neutron-rich nuclei and matter flow in the -process
The -decay half-lives of neutron-rich nuclei with are systematically investigated using the newly developed fully
self-consistent proton-neutron quasiparticle random phase approximation (QRPA),
based on the spherical relativistic Hartree-Fock-Bogoliubov (RHFB) framework.
Available data are reproduced by including an isospin-dependent proton-neutron
pairing interaction in the isoscalar channel of the RHFB+QRPA model. With the
calculated -decay half-lives of neutron-rich nuclei a remarkable
speeding up of -matter flow is predicted. This leads to enhanced -process
abundances of elements with , an important result for the
understanding of the origin of heavy elements in the universe.Comment: 14 pages, 4 figure
Stability of Strutinsky Shell Correction Energy in Relativistic Mean Field Theory
The single-particle spectrum obtained from the relativistic mean field (RMF)
theory is used to extract the shell correction energy with the Strutinsky
method. Considering the delicate balance between the plateau condition in the
Strutinsky smoothing procedure and the convergence for the total binding
energy, the proper space sizes used in solving the RMF equations are
investigated in detail by taking 208Pb as an example. With the proper space
sizes, almost the same shell correction energies are obtained by solving the
RMF equations either on basis space or in coordinate space.Comment: 9 pages, 4 figure
Separable states and the geometric phases of an interacting two-spin system
It is known that an interacting bipartite system evolves as an entangled
state in general, even if it is initially in a separable state. Due to the
entanglement of the state, the geometric phase of the system is not equal to
the sum of the geometric phases of its two subsystems. However, there may exist
a set of states in which the nonlocal interaction does not affect the
separability of the states, and the geometric phase of the bipartite system is
then always equal to the sum of the geometric phases of its subsystems. In this
paper, we illustrate this point by investigating a well known physical model.
We give a necessary and sufficient condition in which a separable state remains
separable so that the geometric phase of the system is always equal to the sum
of the geometric phases of its subsystems.Comment: 13 page
Two monotonic functions involving gamma function and volume of unit ball
In present paper, we prove the monotonicity of two functions involving the
gamma function and relating to the -dimensional volume of the
unit ball in .Comment: 7 page
Families of superhard crystalline carbon allotropes induced via cold-compressed graphite and nanotubes
We report a general scheme to systematically construct two classes of
structural families of superhard sp3 carbon allotropes of cold compressed
graphite through the topological analysis of odd 5+7 or even 4+8 membered
carbon rings stemmed from the stacking of zigzag and armchair chains. Our
results show that the previously proposed M, bct-C4, W and Z allotropes belong
to our currently proposed families and that depending on the topological
arrangement of the native carbon rings numerous other members are found that
can help us understand the structural phase transformation of cold-compressed
graphite and carbon nanotubes (CNTs). In particular, we predict the existence
of two simple allotropes, R- and P-carbon, which match well the experimental
X-ray diffraction patterns of cold-compressed graphite and CNTs, respectively,
display a transparent wide-gap insulator ground state and possess a large
Vickers hardness comparable to diamond.Comment: 5 pages, 4 figures, accepted by Phys. Rev. Let
- …