14,285 research outputs found

    On rigidly rotating perfect fluid cylinders

    Full text link
    The gravitational field of a rigidly rotating perfect fluid cylinder with gamma- law equation of state is found analytically. The solution has two parameters and is physically realistic for gamma in the interval (1.41,2]. Closed timelike curves always appear at large distances.Comment: 10 pages, Revtex (galley

    High sensitivity phonon spectroscopy of Bose-Einstein condensates using matter-wave interference

    Full text link
    We study low momentum excitations of a Bose-Einstein condensate using a novel matter-wave interference technique. In time-of-flight expansion images we observe strong matter-wave fringe patterns. The fringe contrast is a sensitive spectroscopic probe of in-trap phonons and is explained by use of a Bogoliubov excitation projection method applied to the rescaled order parameter of the expanding condensate. Gross-Pitaevskii simulations agree with the experimental data and confirm the validity of the theoretical interpretation. We show that the high sensitivity of this detection scheme gives access to the quantized quasiparticle regime.Comment: 5 pages, 5 figures, author list update

    Predictors of construction time in detached housing projects

    Full text link
    Building on previous literature on construction time performance (CTP), this study looks at the extent to which Gross Floor Area (GFA) and Number of Levels (NoL) are important factors in determining the construction time in Australian detached housing projects. Using a dataset of 196 comparable detached housing projects the results show that while GFA and NoL correlate strongly with estimated construction time, they correlated weakly with actual construction time. Dynamically changing events during construction appear to be the reason for the difference. Analyses indicate that cost variations brought about by Design changes, Site management errors; Site workmanship problems and Unforeseen site problems are significant factors in explaining the difference between actual and estimated construction time. Further, these factors affect larger housing projects (>400m2) more significantly than they do smaller projects (<350m2). It would therefore seem that even though GFA on its own has a poor correlation with actual construction time, this improves when teamed with the above cost variations. These results open up avenues for future research to look more closely at the effects of project dynamics (e.g. using causes of cost increases as a proxy) when predicting CTP, rather than relying too heavily on static variables like GFA or NoL. It is important that such variables are taken into account as a basis for teaching and promulgating an analytical basis to predicting construction time

    Accomplishments of the NASA Johnson Space Center portion of the soil moisture project in fiscal year 1981

    Get PDF
    The NASA/JSC ground scatterometer system was used in a row structure and row direction effects experiment to understand these effects on radar remote sensing of soil moisture. Also, a modification of the scatterometer system was begun and is continuing, to allow cross-polarization experiments to be conducted in fiscal years 1982 and 1983. Preprocessing of the 1978 agricultural soil moisture experiment (ASME) data was completed. Preparations for analysis of the ASME data is fiscal year 1982 were completed. A radar image simulation procedure developed by the University of Kansas is being improved. Profile soil moisture model outputs were compared quantitatively for the same soil and climate conditions. A new model was developed and tested to predict the soil moisture characteristic (water tension versus volumetric soil moisture content) from particle-size distribution and bulk density data. Relationships between surface-zone soil moisture, surface flux, and subsurface moisture conditions are being studied as well as the ways in which measured soil moisture (as obtained from remote sensing) can be used for agricultural applications

    Motional Broadening in Ensembles With Heavy-Tail Frequency Distribution

    Full text link
    We show that the spectrum of an ensemble of two-level systems can be broadened through `resetting' discrete fluctuations, in contrast to the well-known motional-narrowing effect. We establish that the condition for the onset of motional broadening is that the ensemble frequency distribution has heavy tails with a diverging first moment. We find that the asymptotic motional-broadened lineshape is a Lorentzian, and derive an expression for its width. We explain why motional broadening persists up to some fluctuation rate, even when there is a physical upper cutoff to the frequency distribution.Comment: 6 pages, 4 figure

    Cosmological Models with Shear and Rotation

    Get PDF
    Cosmological models involving shear and rotation are considered, first in the General Relat ivistic and then in the Newtonian framework with the aim of investigating singularities in them by using numerical and analytical techniques. The dynamics of these rotating models ar e studied. It is shown that singularities are unavoidable in such models and that the centr ifugal force arising due to rotation can never overcome the gravitational and shearing forc e over a length of time.Comment: 17 pages, 6 figures Journal Ref: J. Astrophys. Astr. (1999) 20, 79-8
    corecore