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ABSTRACT

'An analyticél study of the static response of a homogeneous
~clay stratum to footing loads is présented in this dissertation.
Cléy'is modeled as a'linear elastic-perfectly bléstic material with
the'Drucker—Prager yield condition andbassociated flow rule. The
effect of large deformations on thé ?eséoﬁse of the clay is included

in the analysis. Both drained and undrained analyses are considered.

In particular a single, strip surface footing bearing on
a finite stratum of clay is considéred. The footing is assumed
to be rigid and thé interféce betweeﬁ the fboting and soil may be
either smooth or rough. The base of the soil stratum is rigid and

perfectly rough. A plane'strain condition is assumed.

Numerical techniques are utilized to solve this elastié-'
plastic, large deformation boundary valué problem. The finite element
method is used for spatial discretization, while an incremental
integration schéme, referred to as the mid-point rule, is used to
develop.the complete 1oad-displacement-streés response. A FORTRAN
IV computer program was written to formulate and solve the governing

equations.

A 50 ft. deep clay stratum loaded by a 5 ft. wide footing
is treated in detail., Effective stress analyses for overconsolidated
clays are presented fof three different friction angles (all other
material parametérs are fixed). Total stress undrained analyses are
preseﬁted for two_valueérof Young's modulus, the ofher material
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parameters being fixed. Footing load-displécement curves are shown
for each problem considered, while stress distributions, zones of
.yielding and velocity fields are presented for selected problems

only.

Fpr reasonable valﬁes of;both total and effective stress
_barameters, the results of small and 1arge.deformation analyses
are found to aiffer only near fhe iimit load. It was also deterﬁined
that for a rough punch bearing on a von Mises or an extended von Mises
(Druéker-Pfager) material, tﬁe mode of failure corresponds to the
vso-called Prandtl velocity field. For a smooth punch bearing on eitﬁer
a von Mises_or extended von.Mises material, the failure mechanism
does not exactly corfespond to either a Hill or Prandtl type velocity

field.



1. INTRODUCTION

1.1 The Physical Prbblem

The primary purpose'of this diésertation is to present an
analytical study of the static response of.a homogeneous clay stratum
to footing loads.. Clay is modeled as a linear eiastic-perfectly plas~
tic material with the Drucker-Pragér yield condition (22) and associa;
ted flow rule. The‘efféct of lérge_deformations on the response of
the soil is included in the analysis. Both drained and undrained

analyses are considered.

In particular we consider hefe a single, strip, surface
footing beariﬁg on a finite stratum éf clay (1oaded normally and
centrally). The footing is‘assumed fo be rigid and the interface
between the footing and soil may be eifher Smooth or rough. Thé base
of the soil stratum is rigid-and perfectly rough. A plane straini

condition is assumed.

Footing width and sfratum deptﬁ are two of the many para; <
meters which affécﬁ this problem. However here we chése a single set
of gebmetric pafameﬁers while allowing the mgterial parametérs of the>
soii to vary. As can be seen iﬁ Fig. 1, the footing is 5‘ft. wide
and the soil stratum is 50 ft. deep. In addition to this,parficular
problem thch is treated in Chap. 6,7we also cénsider in Chap. 5 a
shallow layer of undraiﬁed clay as well as some gdditional solid
mechanics problems, e.g., a notched elastic-plastic tensile specimen
- and an elastic cantilever beam suffering largé_displaceﬁénts., Also
in Chap. 5 we examine, by means of numerical experiment, some 6f the
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variables associated with the numerical solution techniques used here.

.Numerical techniques are utilized to obtain fhé soiutions
presented herein. The finite element method (79) is used.for spatial
discretization while an incremental integration scheﬁe, referred to
as the mid-point rﬁle, is used to develop the complete load-displace-
ment-streés response. Constant strain triangles ére used exclusively.
A FORTRAN IV computer program.was written to formulate andﬂsoive the
governing equations. A brief description of this program is presented

in Appendix III.

The principal physicél problem cqﬁsidered here is clearly
highly idealized. Claybis noﬁ'strictly an elastic-plastic matéfial '
nor are most soil stratavhomogenedus, aﬁd, in fact, most footings
are submerged below the soil surface, TIdealized problems ére solved
in order to gain insight, quélitative information and sometimes
qﬁantitative information with regard to real physical problemé.“ The
aim here is not to sbive a'particular problem but to look at a class
of problems and fo observe, through analysis!>the behavior of fhe |
footing=-soil syétem. The introauction of additional pafameters‘asso-
ciéted with lgyered soil profiles, subsurface footings and more complex

soil models would confuse rather than enlighten.

1.2 ‘Previous Work

In the past few years a number of investigators have con-
sidered horizontal nonlinear clay strata subjected to vertical loads
such as those transmitted by a footing. Some have treated soil as a
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‘nonlinear elastic material while others have utilized elastic-plastic
models. We consider first the nonlinear elastic investigations fol-

lowed by elastic-plastic investigations.

Girijavallabhan andvReese (30) coﬁsidered a circular foofing
bearihg on an undrgined clay where an isotropic nonlinear elastic
mbdel was used for the clay.'_Poisson's ratio was assumed to be constant
and ﬁhe secant value of the shear modulué was assumed’to.be uniquelyi
related to the octahédrél shearing strain. An iterative approach was
used to solve fhe equilibrium eduatibns‘and the finite element mefhod
was used to discretize the soil stratum. A model footing test was:
analjzed, and analysis and experimént were shown to agree feasonably

well,

Desai and Reese (16)_alsé used an elasticrmodel and the
finite element method ﬁo treat circular footings bearing on an un-
drained clay. ﬁAn incremental approach was used to integrate the equa-
tions. It was assumed that in each incremént the instantaheous.stiff-
ness of the clay could be described by a constant Poisson's ratio
and a tangent value of Young's modulus. The incremental material
parameters were obtained‘directly from undrained triaxiél tests.

Model footing tests for a single soil'layer and two soil layers were

analyzed. Experiment and analysis were shown to agree well.

Desai (15) uséa spline functions to numerically approximate
qndraiﬁed triaxial stress-strain data. An incremental integration
scheme was.utilized and incremental elastic parameters were determined -
directly from the spliné fuhctions; The finite element method was
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used to analyze model circular footing tests, with good_results. Some

comparisons were also made between footing load displacement curves

. obtained from spline approximations and hyperbolic approximations for.

undrained triaxial stress-~strain curves.

Duncan and Chang (23) used a hyperbolic representation for
undrained triaxial stress strain curves. The finite element method
and an incremental integration scheme were used to analyze circular

footings bearing on undrained clay.

‘Hoeg, Christian and Whitman (35) used a finite differeﬁce
technique to analyée a shallow layer of undrained clay subjected to
a strip load. The clay was modeled és an elastic-perfectly plastic
material with.a Tresca yield criterion. The numérically determined

limit load and the exact limit load were shown to be identical.

Tang and Hoeg (71) utilized a linear elastic~plastic strain
hardening model_develpped by Christian (13) to treat strip footings
bearing on frictional materials (e.g., nﬁrmally consolidated clay). 

The soil model is similar to the strain hardening models proposed by

~ Drucker et al (21) and Roscoe et al (61). A finite difference tech-

nique and an incremental integration scheme were used to solve the
problem. The results were somewhat unsatisfactory with the load-
displacement curve having a zig-zag character. Some dynamic problems

were also considered with better results.

Fernandez and Christian (26) treated a strip footing bearing
on undrained clay and both material and geometric nonlinearities were

-



included in the formulation. A hyperbolic nonlinear elastic model
and én elastic-plastic Tresca model were used to describe the élay.
The finite element method and ﬁhe mid-point integration rule Qere
utilized in the solution.v The results were evidently very‘poor,
particularly for the'elastic~p1astic model. The load diSplacemeht
curveé were-very.irregular and'ﬁheAnumerical iimit load was far
above the theoretical limit load. It is not élear if large deforma-
.tions were included or excluded.in the footing problem treated.in
the report. However for the particular soil parameters utilized in
the example, the changing soil geometry‘should have little affect on

the results.

" Hoeg (34) coﬁsidered'a circular footing Eearing on a shallow
.1ayef of uﬁdrained soft clay in which the clay was assumed to be a
liﬁear elastic-linear strain softening material. An isotropic soften-
ing von Mises méterial model was utilized. -The'finite element method
and an incremental integration technique were used to solve the problem.
For é softening‘stiffness equal to about 20 percent of the elastic. 

stiffness, the maximum load was found to be reduced by 40 percent.

Finally Zienkiewicz et al (84) treat a uniform strip load
bearing oh a soil obeying the Drucker-Prager yield condition and itsl
associated flow rule. A combined iterative-incremental integration
scheme in association with the finite element method was used to solve
.the problem. For the particular set of material properties considered,
the iterative scheme failed to converge at‘a load which is approxi-
mately half of the theoretical limit load. No load displacement curve‘
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was presented but zones of yielding at.vafious load levels were shown.

1.3 Sign Convention for Stress .

The typical continuum mechanics sign convention (tensile
stresses. positive) and the usual soil mechanics.sign éonvention
-(compressive stresses posiﬁive) are shown in Fig. 1f In Chaps. 2
and 3 the continuum mechanics sign convention is.utilized while the

stresses reported in Chap. 6 follow the soil mechanics convention.

1.4 Scope of the Investigation

We preserit here plane strain analyses of a rigid étrip
footing bearing on elastic-perfectly blastic soil. Neithef strain
hardening nor strainvsoftening is considered. Complete-load-diéplace-
meﬁt histories are-presented from’zefo load to failure,»encoﬁpassing
vinitial elastic behavior, contained plastic flow and collapse. We
show also stress distributions and zohes of yielding at various
load levels and show Velociﬁy fields at the coll;pse’state. Particular
attention is given to the affect of the changing soil geometry.on the
response of the éoil stratum fo the footing loads. The finite elemenf
method and an incremental integration scheme are used to numerically

solve the governing equations.

A von Mises model is used for total stress anélysis of
undrained clay while.a Drucker-Prager model (extended von Mises) is
utilized for efféctive.stress (drained) analysis of overconsoiidated
clay. Some elastic-~plastic analyseslof undrained clay strata have
lappeared in the literature, as iﬁdicated ih Sec. 1.2 However, the
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more general case of a C-¢ soil has been treated only briefly with
inconclusive results; .We present here in—depth treatment of both
drained and undrained cases. In addition, a successful formulétion and
solution of the large deformation problem in soil meqhanics is presented
here for the first time. We alsé’éhow, for the first time, that the
'well_known Prandtl velocity field(éorresponds.to the -true failure

mode for a rough punch bearing on an extendedvvon Mises or von'Mises

material.

This dissertation is organized as follows. In Chap; 2 wév
discuss two elasti;-plastic soil models--the Drucker—Prager:perfectly
plastic model and a'strain hérdening'model of Roscoe and Buriand (59).
Incremenfal constituti&e relationships are developed for both models;'
Incremental equilibriﬁm equafions for the'large.deformatiohrproblem
are formulated in Chap. 3 and subsequently used to develop thé instan-
taneous sﬁiffneés of a constant strain triangle. ‘Incremental integra-
tion techniques are reviewed in Chap. 4. The mid-point rule and

_various details of the integration séheme used here are also discuésed.
Some example problems and numerical experiments are presented in.
Chap. 5,and drained and ﬁndrained analyses of a 50 ft. deep.clay'strétum .
are presented in Chap. 6. A summary and some conclusiﬁns are given

in Chap. 7.



2. ELASTIC-PLASTIC STRESS-STRAIN MODELS FOR SOIL

2.1 Introduction

'Siﬁce we pibpose here to make an anélyticalvstudy of the
reéponse of soil to footing loads, we must necessarily select a mathe-
matical model for soil stress-strain behavior. The amount‘of‘valid
ihfdrmation.that can be-extractéd from suéh a study is, of course,
'dépendent upon the degree to which the mathematical model approximdtes
real soil behavior. The complexity of sbil stress-strain response might
be cause for severe. pessimism in this regard. Hoﬁever, the mechanical
behavior of all materials is complex and must be dréstically idealized
in order to make mathematical analysis tractable. For example, metal
behavior has been exteﬁsivély investigated, yet in most analytical work
metal is ideglized'as being a perfectly plastic; isotropic hardening
ar kinematic hardening material. In certain instances ali.three_
idealizations can be shown to fall short of real metal behavior.

The proper idealization is, of course, problem dependent. For ihstance,
most engineers ﬁouid feel justified in using'aﬁ elastic model for‘.
initial settlement analysis when the'working-load was far below the

maximum bearing capacity of the foundation.

‘Soil‘is less amenable to simple modeling than is metal.
Unlike metal, soil behavior is affectedvby hydrosgatic'pressufe,'and
the tensile and compressive behavior of soils differ. Here we treat
.soil'as a plastic material and assume that plastiéity theoryvappiies.
We discuss in this chapter two élastic-plastic'soil modéls——an elastic-

perfectly plastic model and an elastic-plastic strain hardening model.
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‘However, only the perfectly plastic model is used in the subsequent
computations. We view both models as useful'computational tools not

as highly accurate predictors of detailed sc¢il stress-strain behavior.

- 2.2 Typical Soil Stress-Strain Behavior

Some representative stress-strain curves for soil are shown
in Fig. 2. For the moment we think in terms of a strain-controlled

triaxial test, and except where noted stress means effective stress. .

The stress-strain behavior of loose sand orvremolded'clay
is characterized Ey a highly nonlinear response curve which rises to
a maximuﬁ and remains there as. straining is continued. Thé behavior
of undisturbed insansifive clay is characterized by an initial 1ineaf
portion and peak stress followed by soffening to a residual stress.
Sensitive clay behaves similarly except that the difference between the
peak stress and.the :esidual stress is substantial. Finally, undrained
total stress behaviof of clay.is characterized by an initial lipear

'portion and peak stress with perhaps some strain softening.

-In the most fundamental sense, soil is a plastic material
rather than an elastic material. For example, considering Fig. 2a,
if we stréin the soil to point A and then reverse the strain direction
such that complete unloading fakes place, we find that we are left with
a residual strain, OB. A nonlinear elastic material would unload along
loading péth OA, and it is in this sensé that soil is pléstic rather

than elastic.
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It is of course not neéessarily the case that soil stress-
strain behaviof can Be successfully modeled using the classical theory
of plasficity. It is in facf possiﬁle that.noﬁlinear elastic models
may be more suitable for most loading histories. Duncan and Chang (23)
have used a nonlinear elastic modél (with linear unléading) to success-
fully predicf the reéponse of a sand in the triaxial tesf when a |

fairly complex stress history was prescribed.

“Here we choose to use elastic-plastic models to describe soil
stress-strain behavior. We discuss first the Drucker-Prager perfectly

plastic model followed by a Cambridge strain hardening model.

2.3 Drucker-Prager Perfectly Plastic Soil Model

The stress-strain curves shown in Figé. 2a, b, and d can
all be appro#imated to some degree by a linear.elastic-perfécfly
blastic model. It is unlikeiy however that.a perfectly plastic
idealization woqld be a useful model_for senéitive clays. The complete
description of an elastic~-perfectly plastic model entails appropriéte

elastic constants, a yield function and a flow rule.

Ihere exist a number of failure criteria which reflect a
fundamental feature of soil behaviof, that is, soil failure, unlike
metal yield, is in some way a function of the hydrostatic stress
component., The Mohr-Coulomb criterion (8) is certainly the best
knowﬁ of these criteria. Shield (66) bresented a pictorial represen-
tation of the Mohr-Coulomb criterion in three—dimeﬁsional principal

stress space and also discussed the criterion in the context of perfect
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plasticity and the associated flow rule. Drucker and Prager (22)‘
discussed an extension of the well known von Misés‘yieid coﬁdition
which included the hydrostatic component of the stress tensor, and
sabseduently Drucker (18) presented the so—called.expended Tresca

yield condition.

The extended von Mises yield function, as viewed in three-~
dimensional principal stress space, is shown in Fig. 3. The épace

'diagonal is a line defined by o, = g, = ¢, where o> o, and o, are

3 2 3

the principal stresses. Any plane perpendiculaf to the spacé_diagonai

1 2

is referred to as an octahedrgl' plane. The extended von Mises:

yield condition is a cone with the space diagonal as its aﬁis. ‘The -
extended Tresca critefion is.é pyramid with a regular hexagonal’base
and the space diagonal‘as ité-axes, whiie the Mohr-Coulomb criterion
is a éyramid with an irregulgr hexagonal base. and the space diagqnal_

" as its axis.

Bishop (8)'hés attempted t§ correlate all three criteria
with experimental'data.and has cénclﬁded that the Mohr-Coulomb cri?
‘terion best predicts soil failure. Roscoe, et al.(62) contend that
the available experimental data (particularly triaxial extension
tests) afe not sufficiently reliable to allow one of the criteria to
be favored over the others. They thus recomﬁend the extended von Mises
criterion because of its simpiicity. Furthermore, for the plane strain

case it can be shown that in the limit state (where elastic strains
are identically zero) both the exteﬁdea von Mises and the'extended'

Tresca criteria reduce to a Mohr-Coulomb type expression (18,22);
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This implies that we can adjust tfhe constants of‘the extended von Mises
and extended Tresca criterié such that all three criteria will give
identical 1imit.loads. We note however that the three soil models

- will give different predicﬁions for soil response below the limit
‘load. In the spirit of the Cémbridge soil models (64) and Qith the
abové discussion in mind, we utilize herein the Drucker-Prager con-

dition (extended von Mises).

Yield Function
Referring the components of stress and strain to any Carte-
sian coordinate system with axes x, y and z, the Drucker-Prager yield

criterion may be written as,

ap + J21/24= ko ¢S

where p is the hydrostatic component of the stress tensor,

p = (cx + cy+ oz)/3 - , - (2)
and J2 is the second invariant of the deviatoric stress tensor,
_ 1 . 2 - N 2 ' - 2 v

J2 = 6_'[(cx cry) + (o - 0)° + (cy ) ]+ ciy+ chz +<G:;z (3).

where 0 , 0., 0., G, O 0 AareCartesianstresséomponentsatzapoiﬁt
X y z> °x xz yz

y .
in the soil, and o and k are material constants. If o is zero,
Eq. 1 reduces to the von Mises yield conditiou. Referring again
to the principal stress space shown in Fig. 3, /3 k corresponds to

the radius of the cone at p= 0. We>will find later that o is related

to plastic volumetric strain.”
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In order that the Drucker-Prager and Mohr-Coulomb criteria

give identical limit 16ads, o and k must be defined as follows (22)

3 tanop

o =./K9 + 12 tan®g) - | '; (4)
_ 3C | |
k= /(9 + 12 tan®o) o )

where C is the cohesion and ¢ is the friction angle of the soil.

Stress-Strain Relations

In order to determine the elastic-plastic,. incremental
stress-strain relations, we start with the associated flow rule after

Drucker (17) and write, in indicial notation,

‘b _ of ' ‘ | S
eij = K_SETT v _ - (6)
1]
where | ' o Cf = op + J21/2 -k : M

and eij is the infinitesimal strain tensor with superscript p denoting

‘ plastic strain and the super dot denoting strain rate. The Cartesian
.stress tenso;.is dénoted by dij; and A is an arbitrary non;negative
'number.which is greater than zero for plastic loading (f(cij)_= 0)
and equal to zero for plastic unloading br if the stress state lies
within the yield surface (f(cij) < 0).  In general if the current
stress state is known and the stress rate tensor is prescribed, the
strain rate tensor is not unique}f determined since the plastic
strains can only be defined to within the indeterminate'parameter A.

~ Conversely if the strain rate is prescribed, the stress rate is gni-
qqely determinea, Since a displacément fofmulation is:to be utilized
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here, we wish to develop an expression relating stress rate as a
function of strain rate. Thus XA will be determined as a function of

the strain rate tensor.

The elastic rate relationship between the stress and strain

is

E f'e.A' v ‘e
1813 T- 2v %k %43 R (&

where E is Young's modulus, v is Poisson's ratio, éij is the Kronecker
e . . '

delta, eij is the elastic component of the strain tensor and we sum

over repeated indicies. Noting that total strain rate, eij’ is the

sum of elastic and plastic strain rates, we can relate stress rate to

total strain rate, as follows,

O _E_[(. of v/ SF > ]
Cii T T v Keij A acij) 1T 20 Bk T A SE;; 6ij : (9)

The stress-rate-strain rate equation is fdlly defined once A is known.
To determine A we note that during piastic 1oading,'the stresses must

lie on the yield surface, f(cij) = 0, and

of é ,
acij ij

df = =0 . ' (10)

that is, the stress rate vector must be tangent to the yield surface.

Equations 9 and 10 permit the determination of A. To compute

A we start with some preliminaries as follows. From Eq. 7

NS ‘
3 p 1 . -1/2 %%
%, %%, "2 T, » an
Tij ij ij
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where op _ 1 ' ‘
: Fele) 38 : (12)

ij 1]
[N : : - o
%, . i : _ (13)

and s,, is the deviatoric stress tensor. Hence we can rewrite Eq. 11

. as

1]
3 1 1. -1/2
I L A 543 (14)
ij v
From Eq. 14 we can write
. . | .
83 = o _ (15)
" Tkk : :
We note from Eq. 15, that
P x 2 g o (16)
- kk aokk _ ' ‘

Thus for « other than zero, plastic volume change is nonzero. Finally,

using Eqs. 9, 14 and 15 we can rewrite Eq. 10 as

N 1. -1/2
df = 0 = 13 @ 6ij + 3 J2 'sij}
-1/2 SN
. Ao b, A ..
E (. - ij 72 __y___( . > _1}-
X {1 ¥ v L(eij 3 2 Sij) T T WG TN )85
' (17)
This équation can be solved for A, and after some simplification we
obtain,
GJz—l/2 s e -+ Be
- G+ oB :
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where G is the elastic shear modulus,

E . '
=@+ At
and _ 2061 - v : '
. B =3 ————] o (20)

b1 - Zv

To obtain the desired stress rate-strain rate relationship, Eq. 18 is

substituted into Eq. 9 to give

c..=D,, e (21)
13 13pq pq
where
5oy 5 T s ]
Pispg T T+ v Loip P3p ¥ T - v %13 g
(Bo, . + GJZ'.l/2 s; 1 | o |
- ; : 22
C - G+ oB [GJZ Spq + Bqu] - . (22)
The ﬁatrix Di' is referred to here as the elastic-plastic constitutive
ﬁatrix.
For the’plane stralp case (sz = sz =e = 0) we can wr}te,b
in matrix form,
1)
X .
. e
X
o)
y . :
. =[D] e ’ ' . (23)
o] y '
Xy .
. Y
c Xy
4

where the z axis is normal to the plane, ny is the so-called engin-

eering shearing strain,
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ny = 2exy
and

1-v v

' 0 1-v

- [o] = (1+v)E(1-2v)

. 0 0

V) v

| 4 2

H, Hle

2

, HH,  H2?

. \
G + oB

HqH, HgH,

HH HH,

and -B+c3, V2

2
-B+cy %
A 2 y
= GJ2'1/2 o
. Xy

=B+ei, V2
2 z

What we have done to this point is to develop a set of
incremental stress-strain equations for soil using an elastic-per-

fectly plastic model. To the extent that soil failure can be pre-

(24)

(25)

(26a)

.(2§b)

(26¢)

(26d)

dicted with the conventional material parameters C and ¢, this model

can capture soil failure (at least for ﬁlane strain). However this
‘drastic idealization can not capture some important characteristics
of soil behavior. For example, it has been often noted that'tﬁe
amount of dilation aﬁ failure pfedicted by the perfectly plastic

model is considerably in excess of that observed experimentally
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(19). Accofding to Drucker (19) the failurebsurface for soil may
not be the limit of a seéuence of yield surfacéé as 1is normaliy

. coﬁsidered to bé the case for metals. Accordingly, in the next
seétion we discuss a strain hardening model which fqp some loading
histories may more closely‘bredict soii beHavior‘than can a perfec~

tly plastic model.

'2.4 An Elastic~Plastic Strain Hardening Model

A Brief Historical Account v

Considering again Fig. 2a, we note that long before the
max imum sffess has‘been reached éomé irreyéréiblevstraiﬁing has
occured as.evidenced by the fact that unloéding from point A léaveé_
a residual strain.‘ In fhe.céntext éf the theory‘of plasticity this
ISOil might be referred to as.a strain hardening material since the
onsetAoprlastic yielding is:not synonymous with the makimum'stress.‘
A few reéearchers have investigated the possibility of modeling soil
as a strain hardéhiﬁg material, and in particular this has been one
of the major thrusts of the soil mechanics group at Cambridge Univef~

sity for the past'twenty years (58).

Apparently Drucker, Gibson and Henkel (21) were the first
to suggest that soil might be modéled as an elastic-plastic strain
hafdening material.A They proposed that successive yield functions
might resemble extended von Mises cones with convex end caps. As
the soil strain hardens both the cone and cap expand. Drucker (19)
again disgussed this concept in a later papef in which he-suggested
that the failure surface may not be a yield surface. This point is
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further emphasized by Drucker (20) who noted that successive loading

surfaces or yield surfaces do not approach the failure surface.

In 1958 Roscoe, Schofield and Wroth (63)'pub1ished a paper
which-contained the basis for a number of subséquent strain hardening
models for soii. The paper was concerned primarily with the behaviof
of soil in the triaxial test and contained the so-called "state
boundary surface" (called a'yield éurface in the 1958 paper) postulate
and the "critical state line" postulate. These concepts were utili-
zed by Roscoe and Poorooshasb (60) to develop a stress-strain theory
for clay which was not, hoﬁever, based upon the theory of plasticity;
Calladine (10) éuggestéd an alternate interpretation of this theory
~using concépts from strain hardening plasticity. Subsequently Roscoe,

Schofield and Thurairajah (61) utiliéed the stfain hardening theory of
piasticity to formulate a complete stfeés—strain model for normally
consolidated or lightly overconsolidéted clay in the triaxial test.

This model has since become known as the Cam~clay model (64).

Burland (9) sugge;ted'a modified version of the Cam-~-clay
model and this model was subsequently extended to a general three-
dimensional stress state by Roscoe and Burland (59). It is tﬁe
ﬁodified Cam~-clay model that we are concerned with here. We will
see later that for certain stress hiétories modified Cam~clay strain

softens rather than strain hardens.
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Modified Cam-Clay

Modified Cém—éléy is an isotropic, nonlinear elastic-
pléétic strain hardening materiél.“ Only volumetrié strain is assumed
to partially reco&erabie, that is, eléstic distortional strain
'(shearing strain) is assumed to be ideﬁtically zero. Elastic volu-
metric strain is nonlinearly depgndeqt on hydroétatic sﬁress and is

independent of deviatoric stresses.

In order to introduce the reader gradually to the idea of
soil as a plastic strain hardening material, we consider first.the
response of soil te pufe hydrostatiﬁ stress. Typical responsé for a
"real soil is shown in Fig. 4, where void ratio is plotted versus_the
‘natural 1ogarithm.6f the negative of the hydrostatic‘stréss (p is of
course negative here). If the current pressure, denoted by point A,

is the greatest the soilvhas_experienced, then upon application of
increased pressure the séil will load along line AB. If the pressure
is then decreased, the soil will unload along curve BC and upon furthér
application of pressufe will reload along curve CD. If we‘continue'tb
apply pressure, the résponse‘curve tends toapproach asymptotically

line ABE (virgin isotropic consolidation line).

An idealized version of this response is pictured in fig. 5.
The virgin isdtropic consolidation line is éssumed to be linear. The
" rebound and reloading curves are éssumed to be identical ‘and linear, and
all‘rebouﬂd~reloéding curves are parallel. Thus the equétion for the

virgin isotropic consolidation line is

ey = e " A La¢- p) , (27)
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where e, is soil void ratio, .the natural logarithm (logarithm to the’
base e) is denoted by Ln, and e and A are material constants. A

generic rebound-reloadingvcurve is defined by

e =e, =1 In(- p) - (@8
where T is a material constant, and e defines a particular rebound-

reloading curve.

Referring still to Fig. 5, consider an infinitesimal
increment of loading from A to B followed by unloading from B to C.

From Eq. 27, the void ratio change from A to B is

.

where p is the current hydrostatic stress and p is the increment of
hydrostatic stress (stress'rate), and, from Eq. 28, the void ratio

recovered when unloading from B to C is

e =-Tp/p | (30)
Now . , ' . e, : o
11" T+ e, o .6
. v
where : e, .=e. +e V + e ' , : (32)

and in the context of the theory of plasticity, the recoverable or

elastic component of the volumetric strain is

ée — . Np ‘ (33)

-ii | (1 + ev) P
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while, from Eqs. 29 and 30, the plastic or irrecoverable component of

the volumetric strain is

.p A -
®ii (L+e)p %)
V .
since . : e =, -5 - ) (35)
11 11 i1 - ' .

The State Boundary Surface and the Critical State Line

Although the Cambridge models were originally formulated
in ordgr to describe the behavior of soil in the triéxial test, we
 are concernéd here with general states of streés and will hencé ﬁsé
general sfress invériants rather than thoéé peculiar to the tfiaxial
test. It is postulated that there exists a unique '"state boundary
surface" in a threé-dimeﬁsionél space of hydrostatic stress p, J2,
and void ratio e, - ‘A point in this space is referred ;6 as a state
point, and the-staté boundary surfacg is said to delimit admissible -

and inadmissible state points.

A portion of the étate boundary sﬁrféce is shown in Fig.’6.-
State pqints below tﬁe staﬁe boundéry‘are admissible, while those
points above the surface are inadmissible. A continuous sequence
of state points is refefred to as a state path. From the point of
vieﬁ of the theory of plasticity, state paths which lie below the
state boundary surface aré associated with elas;ic béhavior; while
those which lie oﬁ the state boundary surface are associated with

strain hardening.

It is further postulated that there exists on the state
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boundary surface a "critical state line" where unlimited distortional
strain may occur with no ¢orresponding change in the stress state or

the void ratio.

Consider now a soil specimen streésed uniformly (for_example'
in tﬁe triaxial test). We load the spil until faiiuré and plot the
results in state SPace. Referring to.Fig. 6, curve HIJK corresponds
td thelstaté path of the soil. we assume that the initial state
point (denoted by point H) lies below the statebboundary surface;
Thus the initial portion of the state path, HI, corresponds to élasticv
behavior. At point I.thé state path intersects.the state boundary'
'_surface and at point K failure occurs. State path IJK lies on the
state boundary 8urface-aﬁd is thué aésoéiated with strain hardening,

while point K lies on the critical state line.

As the soil stréin'hardens the stress state pasées through‘
a sequence of yield surfaces until failure is reached at the critical
state line. ‘Thésé yield curves can be uniquely represented in p -';2
' spécé. For exaﬁple the initial yield curve is curve CID on the stafe
boundafy surface and is also denoted by curve CID in Fig. 7 where the

stress path is also shown. Curve EJF, shown in Figs. 6 and 7 corres-

ponds to a subsequent yield curve.

The reader should recall that we have assumed that elastic
distorfional strain is identically zero and that elastic volumetric
strain is independent of deviatoric stresses. Thus if we apply a
deviatoric stress increment to the soil samplé‘in ité initial stéte

(point H in Fig. 5), the void ratio remains unchanged and the state
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path corresponds to a veftical line. . If we apply a hydrostatic stress
increment the state path must be defined by Eq. 28. We say then

that state path HI 1ies'in_a so;called'vertical ”ela;tic wall’,

The elastic wéll intersects the J2 = 0 plane along‘a rebound—réloading
curve»and intersects the state boundary surface along a yield curve.
Each'yiéld tur&e is thus associated with a particular isotropic rebound-

reloading curve.

‘Modified Cam-Clay Yield Surface
A modified Cam-clay yield surface and the projection of the
critical state line in p - J2 space are shown in Fig. 8. The yield
curve is elliptical and is defined by
'Jz B 4
= 2 = :
f=»"- Po PH i@ 0 ‘ (36>
where M is a material constant and pé is a strain hardening parameter.
The critical state line intersects the‘ellipse at its maximum point
and is defined by.
1/2 ‘ . -
J2 / = -Mp- o (37)
- that is, the critical stress state is defined by an extended von Mises

. type expression.

The stress~strain model will'be combletely defined once we

- have spécified the relationshib between the strain hardening parameter
gnd the strains. Consideér now an infinitesimal stress increment
denoted by liné AB in Fig. 8. Point A lies on the current yield

curve while point B lies on the subsequent yield curve. Associated
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with the current yield curve is an elastic wall and an isotropic
rebound-reloading curve, and, of course, there is also an elastic
wall and a rebound-reloading curve associated with the subsequent

yield curve.

Referring to Figs. 6 and 7, the éurrent value of the strain
hérdening parametérlis'defined by the intersection of the current
iéotfopic rebound-reloading curve and the isotropic virgin consoli-
détion curve, Both the current and subsequent isotropic rebound-

.reloading curves are shown in Fig. 9 a1ong with thé projection'of'

thg increméntal state pathon;to e, - Lp(- P) sbace, .If we ﬁow éllow
the‘soil sample to'unload, the unloading state path lies in an elastic
wall and its projection‘is denoted by BC in Fig. 9. Recaliing Eq.

34 it is clear that we can rélate the blastic volémetric strain and .

the change in the strain hardening parameter as follows,

: (A - p
P o
e,, = - —/————— (38)
ii (l +‘ev) P
or . 1+ e, b . : R '
pO == r - M Po eii . A (39)

Behavior of Modified Cam~-Clay in the Triaxial Test

We consider now a hypothetical drained triaxial test oﬁ
modified Cam-clay. Thé test>éamp1e is first subjectéd to. an ail
around cqnfining pressure sufficient to cause plastic yiélding.
Thus after applying the pressure thé value of the strain hardening
parémeter, Py> is identical to the applied preséure. The pressure

is then reduced to some value denoted by Py The specimen is
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subsequently strained axially whiie the confining pressure is held

constant.

. . The stress path is denoted by line ABCD in .Fig. 10. The
specimen yieids at point B and strain hardening begins. At points B,.
C and D we have superimposed on the stress space a plastic strain rate
-vector. The hérizontalAcomponent‘of the~stréin rate vector correspbnds
.to voiumetric.strain while the verticallcompdnent correspondé to |
distbrtional strain.- Wé ﬁse the associated flow fule here and hence

the plastic strain rate vector is normal to the yield surface.

At point B the blastic compoﬁént of thé volumettic straiﬁ
is decreasing, and thus the load incfeasés'as we continue to strain |
the body. We see from Eq. 39 that a decrease in the plastic volumet;ic_.
stréin is associated with an expanding yield surface. As we continue
to strain the body further, the sample volume continues to décrease_'
so that strain hardening continues. ‘However, as the cfitical state
1ine is approached the rate of ﬁhe piastic volumetric strain decreases.
until at the critical state the plastié volumetric strain is iden- -
tically zero, as indicated bf thé vertical strain rate vector at  '
point D. Hence as we continué tb strain the sample the vertical loéd
remains constant and we have thus reached the failure condition. If
we were to plot the axial-stfess Qersus axial strain, the curve would

resemble that shown in Fig. 2a.

We should emphasize that the function which defines failure
is not a yield curve nor is it the limit of a sequence of yield curves.
In addition, although the Drucker-Prager model and the modified
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Cam-clay model incorporate similar failure functions, the former
predicts dilation at failure while the latter predicts zero dilation

at failure.

Although the modified.Cam-clay model was developed in order
to predict‘the strain hardening behavior of clay, the model will in
fact predict strain softening for certain stress histories. We
consider now the same type of test as dgscribed previously in which
| ah initial hydrostatic stress(po) is appliéd and subsequently reduced
to a Qalue denoted by Pi- In this case P1 is considerably less than

p, as indicated in Fig. 11.

Referring to Fig. 11, as the test specimen is strainedaxially
plastic yielding first occurs at point B. However here the plastic
vblumetric étrain is positive and the specimen begins to strain
soften with the axial load reducing. From Eq. 39 we see that an
increase in the plastic volumetfic sfrain is associated with a contrac-
ting yieldISurface. " The sbecimen cdntinues to strain soften until
poiné C is reached where the plastic volumetric strain rate is iden-
tically zéro. Continued axial étfaining.produces no éhange iﬁ thev

axial load.

The peak stress is no longer defined by an extended'von
Mises expression but.is rather dependent on the maximum past hydro-
static stress. it is the residual stress that is defined by the
éxtended von Mises expression. The test specimen dilates at the peak

stress whereas at the residual stress no dilation occurs.
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We might refer to the first specimen as lightly overconsolida-
ted and the second specimen as heavily overconsolidated. The lightly
ove:consblidated specimen strain hardened when sheared while the heavily

overconsolidated specimen strain softened when sheared.

Incremental Stress-Strain Equations Suitable for Numerical Analysis

Although modified Cam-clay is suitable for predicting the re-
sﬁonse of soil in the triaxial test, it is not suitable for general" |
stresé analysis. Since the model is rigid-plastic with respect to
shearing deformation, the function we requife in a displacement formula-
tion, stress as a function of strain,'is singular. The possibility of
étréin softening is. also a problem. 'Any numerical approach whi;h re~
quires inversion of the tangeét étiffnesslmay-break down in Ehe presénce
of strain softening. In addition the soiution df boundary value problems
involving strain softening materials is not yet well defined. :In geﬁeral'
it can not be shown that sucﬁ solutions are unique. We thus présenf a
variant of the modified Cam—ciay-mpdél ﬁhich is suitable for a tangent
stiffness formulation.'

Considering first elastic response, from Eq. 33, we.have ,
e = - —1 P2 } - (40)
ii 1 +,eV p .

If elastic distortional strain is'identically zero, the elastic strain
. ) ’ / .

rate-stress rate equation is

e

L. == 6. 1

ij 9(1 + ev) p kK ij (41)

In order to invert Eq. 41 we introduce some distortional flexibility

as follows, - : .
i

1
137 719 ¥ ey p T 3B ki %57 B %15 (42)



where B is the instantaneous elastic shear modulus of the soil.
Equatibn 40 is still valid. Finally, Eq. 42 can be inverted to give,

‘e

. . p(l + e ) .
_ P TS B e
i P 3} ek 015 T B ey I (43)

g, .

1]

If we desire to keep the computational model as close as possible to
modified Cam~clay, the shear modulus, B; can be made quite large,

perhaps one hundred times the_plastic bulk modulus.

- In order to determine the elastic-plastic, incremental
stress-strain relations, we again start with the associated_fldw rule

after Drucker and write

. = K_acij , (44)
where
, 1, ,
= n° u —=
£(o;52P) = P° = P, P T (45)
Noting that _ _ e : é - ép ' ‘ 46)
' ' ' iy o oTii o Tij . .
We rewrite Eq. 43 as
. p(1 + e ) . : ' . .
R Bt i .E] - _§£_> < - _§£_> ,
%33 [ T T3 (ekk M 30, by 1 Blegy - 2 3, 1 “7)

The problem again is to determine A, and we note that during
plastic 16ading the stress state and the strain hardening parameter
change such that the new stress state lies on the subsequent yield
sufface defined by the new value of the strain hardening parameter.

At the beginning of the increment,
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£(o555p,) = 0 | 48

and at the end of the increment,

- Thus

f(cij + 05 op F p,) = 0 o | o (49)
‘ - of ° .
df = Bcij %3 Bp o o , GO

Equations 47 and 50 permit the determination of A.

Now, from Eq. 45,

Cf 1 Sii . :
3., =3 P -y b+ L)
an . o of _ P : - (52)
PO : }
Also, repeating Eq. 39
V . 1+ eV ‘p 1+ ev Sf . :
Po ™ "R -1 P % P 1 Po x Bckk" (53)

Utilizing Eqs. 51, 52 and 53 and substituting Eq. 47 into Eq. 50 gives

at - {2 +—2~1}{a{” (5 0+ =]

RN TR N S S S ()
where, ' i (L+e) | o
L= p'——fﬁ‘lL'+ % | - (55)
.and o . 1+ e, ‘
R= - (T 66
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Simplifying Eq. 54 and solving for A gives,

" Bs. . .. .
i _ . .
- w2 S P e A 57)
= 283 _
'(2p -‘po) H+—m=+p (29 - po) R
vhere - R 2p-p) (B-1) B

Finally, substituting Eq. 57 into Eq. 47 yields the incremental elastic-
plastic stress-strain relationship'

=Be, ., "Le § - % (H 8. . + £ s

B8 . D )
cij ij mm ij V¥ j M ij> <M2 Skt %kt + H Cnm (59)

where | 283, |
b= (p-p)H+—m+p (p-p)R (60
Equation 59 is appiiéable in both the stréiﬁ hardening
and strain softening regions and is, of course, applicablé at the
critical staté.: If p < po/ZIthe model is either strain hérdening'
or at the critical state and Eq. 59 is sﬁitable for the numerical
formulation used here. If p $ pd/z the model is strain softening

and hence would not be suitable for application here.

In order to get around this problem we could introduce a
vperfectly piastié idealization in the strain softening region which
‘would be éompétible witﬁ the modified Cam-clay model. For instance
we might usé the critical state line as a perfectly plastic yield
surface. A.simpler approach would utilize the current value of the
modified Cam-clay yield surface as a pérfectly—plastic yield surface.

The stress-strain equations would still be defined by Eq. 59, however,
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¥ would now be defined by

283,

Vo= (2p - p) H+ 4= ' o (61)

If we utilized Eq. 59 for the incremeﬁﬁél.Stress-strain
.equation and define ¥ by Eq. 60_for p < p0/2 and.by‘Eq. 61 for p >
po/2, we haQe then a gomplete stress—strain model.suitable for use
in a tangent stiffnessAapbroach. This model.haé one potential draw-
back, that is, if fhe'hydrostatic stress éomponent is ;ero; the
incremental stress-strain equations afe singular. This may be
troublesome for some boundaryvvalue prbbléms. To avoid this proBlem,
Zienkiewicz and Naylor (83) have suggestéd using a model which is |

linear in the elastic region. -

Bbundary Value Problems and the Cambridge Soil Models

_Smith_(67) has used the so-called Cam-clay model to analyze
the piang stréin, drained behavior of a preséurized thick cyliﬁder ’
of clay. Smith énd Kay (68) analyzed the same problem using ﬁodified
Cam~-clay as well as Cém-clay. .In both papers elastic strains were
assumed tb be identically.zero._‘Zienkiewicz and Naylor (82) have
analyzed the drained behavior of modified Cam-clay in the triaxial

test. Some elastic distortional flexibility was introduced into the

model.

Zienkiewicz and Naylor (83) have considered a clay layer
consolidating under a footing load. The soil skeleton was modeled
by a variant of modified Cam—élay. Elastic behavior was assumed to

be linear and in the strain hardening region a modified Cam-clay
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yield curve was used. 1In the strain softening region a softening
Mohr-Coulomb type expression with a nonassociated flow rule was

utilized.
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3. INCREMENTAL EQUILIBRIUM EQUATIONS

3.1 Preliminaries

| | The purpose of this éhapter is to develop the governing
differential equations byvintroaucing thé..preceeding*stress-strain
relations ipto.equilibrium equations‘wﬁich reflect the éhanging
géometry of the soil stratum. We éésﬁme that the @agnitude of the
deformations is such that geometric changes caused by deformation

must be considered when writing the equilibrium equations.

Heréin, we forhulate a set of equilibrium equations (in
virtual work form)for a small increment of deformation superimposed
on an already deformed and stressed bédy (initial configuration).
Our final dbjeétivé is to determine the tangent stiffness of the bbdy,

with due consideration given to large deformations.

We ndfe to begin wi;h thaﬁ the equations of continuum
mechanics can be»posed in Eulerian or'Lagrangiah form. Briefly, in
a Lagrangian formulation all quantities (e.g., stress and>strain)
are referred to éoordinates associated with some reference configura-:
tion, perhaps the undeformed condiguration of the body. 1In an
Eulerian formulation all quantities are referred to coordinates asso-
ciafed_with the current configuratioﬁ of the body. Lagrangian and
Eulerian coordinates are sométimes referred to as material and

spatial coordinates respectively.

We differentiate now between a Lagrangian incremental formu-

lation, an Eulerian incremental formulation and a mixed incremental
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formulation. Both fhe Lagrangian ana mixed ihcremental equations
employ a known material reference state. The feference stété used

in the Lagrangian incremental approach is the same for all increments
and is usually tﬁé undeformed, unstressed staté of the body. The
reference state employed in thé mixed formulation is the current
spatial codfiguraﬁion of the bddy, that is, fhe.current Eulerian
coordinates_ofAthe body, andlthis reference state is updatéd following
each inéreﬁental step. A pure Eulerian inéremental forﬁplation,
obtained by faking the first variation of the nonlinear Euleriaﬁ
"equations, has also been presentedvin the literature. A mixed

incremental formulation will be utilized here.

3.2 Some Previous Finite Element Work

Incremental approaches to geometrically nonlinear s;ructural
problemstﬁave appeared-iﬁ the finite element literature since l960;;2
Howevér, the mechanics of'incremental deformations was a squect of
interest considérébly before this time. Lineafiigd mechanics of an
initiélly stressed bbdy ﬁas discussed by Biot (5)(6). Biot (7)
presented a comprehensive treatment of the subject. In the context
- of an incremental approach to nonlinear problems, Biot's formulation.

is mixed.

Turner, Diil, Martin, and Mélosh (72) introduced the
incremental finite element approach to thgvsolution of geometrically
nonlinéar strﬁctures; A somewhat long derivation leads to a sfiffness
matrix for a platé element which includes the_infinitesimal stiffness

matrix and so-called geometric or initial stress stiffness matrix.
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The incremental equilibrium equations are meaningful when used pro-
perly in the context of a mixed incremental approach, as this term is

defined here. Strains are assumed to be_small..

Martin (44) introduced the Green strain tensor into.an
incremental formulation .of the gmall strain? 1arge rotation problem.
The stiffness matrix s0 deﬁeloped can be used in a consistent mixed
approach in thebfollowing two ways. If one.takes the initial étress
as the Kirchhoff stress (accumulated from the undeformed configuratioﬁ),
- the stiffness matriX‘isAreferred correctly to a local coordinate
system which has fqllowed the élement rotation. This would be the
natural way to handle beam~column problems. One might alternately.
‘take initial stresses in the gloBal system, and the incremental stiff-

‘ness matrix will hence also be referred to the global sjstem.

Wissmann (75) presented a Lagrangian, tensor formulationl
for bodies suffering large rotatiqns ﬁut émall strains. A set of
Lagrangian incremental equations‘was bbtained through a linear Tayior
expansion of the nonlinear equations about a stressed, deformed con-'

figuration:

Feliépa (25) introduced a virtual wofk equation for ini-
tially stressed bﬁdies. The incremental approach is mixed and, as
indicated.by Fernahdez and Christian (26), may only be strictly
applicable éo the small strain, large rotation problem. It appears
_that.Félippa (25) was tﬁe first.to combine both material and geometric

nonlinearities, solving a piastic buckling problem.
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In a manner similar to Wissmann (75>,>Ma11ett and.Marcal
(40) developed Lagrangian incremental équétions'for linear elastic
structures sufféring large rotations. The so-called initiai displace-
ment matrix, unique to the Lagrangian incremental approach, was dis-
cussed in some detail. Marcal (42) ﬁSed a virtual work approach.to
formuléte Lagraﬁgian incremental equationé for the elaétic-plastic,

large rotation problem.

Yaghmai (77) presented an in-depth study of incremental
~virtual work formulations of the large strain, large rotation problem.
Both Lagrangian and mixed incremental approaches were considered and .

the mixed formulation was applied to shells of revolution.

Lagrangian incremental formulations for problems‘involving'
large strains as well as large rofations were presented by Hartz and
Nathan (32), Oden (50) and Hibbitt, Marcal and Rice (33). Hartz
»and Nathan considered hyperelastic materials and obtained incremental
equations through a faylor expansioﬁ of the nonlineér eqﬁafions; "A
hierarchy of nonlinear.théories was presented in the manner of No?o;
zhilov.(49). .Oden developed incremental equations by considering
a s@all perturbation about a known configuration. Hibbitt, Marcal
and Rice used virtual work to formulate increﬁental equations.-'A..
rationally developed incremental elastic-plastic constitution 1éw

relating Kirchhoff stress and Green strain was presented in the paper.

Hofmeister, Greenbaum and Evensen (36) presented a mixed
incremental formulation for the elastic~plastic, large strain, large

rotation problem. A modified version of the incremental equations,
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accounting fér nonéquilibrium of the initial stress state, was dis-
cussed. A similar modification for a small strain Lagrangian formula-
tion was proposed by Stricklénd, Haisler and Von Riesemaﬁn (69).
_vThey demonstrated through numerical example-the superiority of the
modified incrémental approach as cdmpared to the conventional incre-.

mental apprbach.

Dupuis, Hibbitf, MbNamara,vand>MarEal (24).and Zienkiewicz
and Nayak (éO) presented parallel Légrangiaﬁ and Eulerian incfemental
formuiations. The finite element concept was used ekplicitly in the
derivations of both papers, énd the incremental equations were obtained
by‘taking the fifst variation of the nonlinear equationé. Dupuis et al
assumed strains to be émall,.while'Zienkiewicz and Nayak consider
'large strains. 1In addition Zienkiewicé and Nayak discussed a large

strain, elastic-plastic formulation.

Finally,'Fernandez and Christian (26) considered the effect _
of large deformations on some soil mechanics problems using the

incremental‘appfoach of Biot (7).

The bibliography presentéd here represents only a éma11~part
of the finite element literaéure on géometric nonlinearitiesf -A good
overview of the subject is preéented by Oden-(SO), and an informative
;omparison of soiution techniques is presented by Haisler, Strickland'
and Stebbins (31). Additional references can be found in Gallagher

(28) and Oden (51).
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3.3 Mixed Incremental Formulation

When presenting an incremental.formulation, one must first
of all be careful to differentiate between Eulerian,‘Lagrengiahband
'mixed approaches. Secondly, in the context of large rotations and
deformatiens, "stress'" and "strain" must be preciself defined.
Finally, an incremental formulatien is not‘complete until ohe.has
described fglly the procedures for progressing from increﬁent.to

increment.

We make no a priori assumptions concereing the magnitdde of
rotations or strains. However, the equations governing incremental
deformation are predicated upoe the assumption that incremental
strains are an order of maghitude smaller than incremental rotations.
The large strain phenomenon ' is captured by.updating the geometry'at

the end of each increment.

A brief word'concerning theAnotation'used in this chapter
is appropriate here. We use indiciai notation and the associated
summation convention. Any term containing a repeated inde#vis to be
summed over that index (frqm 1 to 3). A comma followed by a subscript
indicates a partial derivative with respect to current material coor-
diﬁates. | | )
To formulate the equations governing an increment of defor—
mation we consider two different configufatiens of the body, an initial
configuration and a subsequent configuration. The stresses, strains
and displacements in the initial.eonfiguration are presumed knewn
and have been determined through a sequence of incremental steps.
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We note that due to the gpproximate nature of the analysis, the initial
stresses probably do not satisfy identically tﬂe eqﬁations of equiii—
brium. The subsequent éohfiguratioﬁ is reached:ﬁhrough_a further
incremenf of deformation,‘and it is the increﬁental stresses, strains

and displacements that we wish to determine. .

Equatibns.of equilibrium for.the subsequent configuration
are writtep in terms‘of the geometry éf the initial cénfiguration.
We can say that’we use a Lagraﬁgian formulation fo prescribe eqqili-
brium of theAsubsequent configuration where the material coordinates
bare the éoordinates of the body in the initial configuration. Initial
stresses.are referred to a giobal réference_frame, and the initial

geometry is a deformed geometry determined by previous increments.
. . i

Before beginning the anaiysis, it might be helpful to
introduce some of the tefminology to be used hére. We will refer to
three différent stfess tensors: |

Gij - Initial Cartesian stfess tensor réferred to a global reference
frame. It is to be clearly understood that these are physical
stress components representing}force per unit of area éf'
the initiél geometry. This tensor is called Euler's stress
tensor in the engineering mechanics literature. In addi-
tion Eij is the Eulerian ;tress tensor in the_subsquent
configuration.

Tij - A Cartesian stress tensor in the subsequent configuratiég.
The‘stress components are referred to a locally rotated .

Cartesian frame which varies from point to point. These’
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are physical stress components, that is,.force per unit
of area of the subsequent geometry. |
Sij - Kirchhoffs stress tensor (27). This tensor will be formally

defined later, it being noted however that.Kirchhoff;s_
stress tensor describes the stress state in the subsequent
gonfiguragion as referred to the geometry of the initial :
configuration. These are not physical stress combonents as
defined above.

We will also refer to two different strain tensors. Green's strain

tensor (27) is defined as

1 ‘ B
1372 @i et Y Yy (©2)
and the infinitesimal strain tensor is.
e,. = 1 (u, .+ u, .) (63)
ij 2 i,j j,1i

where u, is the incremental displacement vector.

Consider now a body situafed in a fixed Cartesian reference
frame (X,Y,Z); Referring to Fig. 12, let s denote the boundary sﬁrface
of the body in its initial configuration and s' denote thg boundary
Ain the subsequent configuration. Let (xl’XZ’XB) be the ihitial
Cartesian coordinates of a generic point in the body, and let (§1,
§2,§3) be the Cartesian coordinateé of thé same poinﬁnaf?er an incré-

ment of deformation. We write

€. = x, + u, o (64)
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Equilibrium of the initial state is implied by the virtual'

work expression

J“S T, ou; ds o+ fv Py Fi () buy dv = J‘v oy beg dv (65)

where Ti is the boundary traction vector per unit of initial area,
Fi(x) is the body force vector per unit mass and 50 is the mass density
of the initial configuration. It is assumed here that body force is
purely a function of position in the fixed reference frame. The
virtual displacement field is denoted byléui and is identically zero

- where displacements are prescribed. Also

be. ., = 1 {(8u.) .'+"(6u.)-.} s . -(66)
| ij 2 i, 3. i’,1i | .

where we note for the sake of clarity that

, B(&ui)
®0) 5= T

(67)

We now consider equilibrium of the subsequent configuration.
"The Kirchhoff stress tenmsor in the subsequent configuration is denoted
by Sij and is defined as (27),

= . (68)

p Ox, Ox,
g o i S
ij o ng BEL k4

where p is mass density in the subsequent configuration and L,
is the Eulerian stress tensor in the subsequent configuration. We

note that Sij is symmetric.

Remembering that the equation of equilibrium of the subsequent-

configuration is to be written in terms of the geometry of the initial
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configuration, we note that the internal virtual work per unit of
. initial volume is the product of Kirchhoff's stress tensor and the

variation of Green's strain tensor (49), that is, -

§Wi = IV Sij §€ij dv - | (69)

Equilibrium of the subsequent configuration is then implied by the

virtual work expression

js (T, + AT,) 8u, ds + jv P, F;(8) bu, dv = jv S;5 685 dv (70

where ATi is the incremental surface traction vector per unit of initial
area. We note that the simplicity of the incremental traction vector
shown here hides a more complex phenomenon in which ATi may be a function
of incremental boundary displacements as well as incremental boundary
forces _(51)(33). Since surface tractions are not of primary concern
here, we retain this simplified representation.
We write now,
S..=o0,.+ AS_, ' ' (7D
1] 1] 1]

and call ASij the incremental Kirchhoff stress tensor. Sﬁbstituting ,

Eq; 71 into Eq. 70 and noting that

1 o . v
6€ij = 6eij + 2 {uk,i (6uk),j f uk,j (6uk),i} (72).

we obtain
js AT, Su. ds + jv o, AF; du. gv + {fs T, bu, ds + jv p, F;(x) 8u, dv

P

?uk,i (é}uk)’j +»uk,j (éuk)’;} dv

FCY S

- [ o, e, avi =T 0

Yo 13 i3 Y, 1
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+ [ B8, Bey; dv o - - | | (73)
v _ . : _
vhere AFi = Fi(g) - Fi(x) ‘ ’ | | - (74)

Regéfding Eq. 73, we note;vfirst of ali,‘that the left
hand side of the equation is devoid of annohn incrementaquuantities.
Secondly,'the expression in bfades on the left-hand sidé of the
equation would be identically zero if the inifial stress distribution
" satisfied fhe equation\of equilibrium (Eq. 65). However, recognizing
“the approximate nature of the analysis, we retain this expression as
per Hofmeister, Greenbaum and Evensén (36). 1If one could find
increﬁental stress gnd diépiacement diétributions satisfying Eq. 73
.for all kinematically admissible virtual diéplacements, the subséquent

configuration would be in a state of equilibrium.

3.4 Two Sets of Linearized Incremental Equations

To this point no approximating assumptions have beeﬁ maae;
Equation 73 is aﬁ.exact statement of thé equilibrium of the sdbsengnt
configuration. 1In what follows two linearized versions of the incré—
mental equilibrium equations are presented., We linearize first‘withouf
_making any assumptions concerning the felative magnitudes of sﬁréins
and rotatioﬁs and findAthe résultant.equations to be asymmetric.
By assuming.the order of magnitude of the incremental strains is less
than thqt of the incremental rotations, we are led to a second.set'of

linear incremental equilibrium equations which are symmetric.

To begin with we note that in the context of small displace-

ments, our elastic-plastic constitutive lawrelates physical Cartesian
46~ '



s;resé rate to the infinitesimal strain rate. In the context.of a
large strain, large rotation analysis,-caré must be taken to relate .
the proper étress incfement to the'proper straih:increment. Consider
now the initial Eulerian stress tensor for a.two—dimensional body as
depicted in Fig. 13. During an incremenﬁ of deformation, the neigh-
borhood of é generic point translates, rotates and deforms, where

to the first order the rotation is defined by
= . | (75)

Physical stresses in the subsequent configuration, referred to a local
coordinate system rotated an amount ® from the fixed reference frame,

are depicted in Fig. 14. We write

T.. = 0,.+ AT.. - (76)
RES TR & ij o ;

It is clear that if the neighborhood of the generic point suffers

rotation but no deformation, then
AT, . =0 B | (77a)
and o ’ T, =0,, S (77b)

We thus propose to use the elastic-plastic constitutive law developed

in Chap. 2 in the following maﬁner,

A5 57 Digit e (73)

We show in Appendix I that the incremental Kirchhoff stress

tensor is related to ATij’ to the first order, in the following

manner (2 - D plane strain),
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AS1y (8T %11 %11 "201, | (11
AS22 = AT22 + Oy9 =0y, -2012 €5y (79
AS12 Ale . | Q | 0 -(011+022)~ €19

Writing the above expression in indicial notation, we have

AS.. = AT,., + VY., e
1] 1] o 1Jpq9 p9g-

(80)
Substituting Eq. 80 into Eq. 73, rearranging some terms and elimina-

ting products of incremental quantities, we obtain the following

- linear incremental equilibrium equation -

js (T, + 4T,) 8u, ds + jv Py F3(8) Suy dv - IQ 0,5 beyy dv

(81)

= o..u . (du . dv + A, .+ Y., e be, ., dv
IV4 i5 %1 O, 5 Iv O35 % Yispq %pa) %ij

Considering the Y matrix defined by Eq. 79, one can readily show
that the differential equilibrium équations associated with the
virtual work expression (Eq. 81) are identical to the two-dimensional

incremental equations developed by Biot (7).

An interesting feature of Eq. 81 is the asymmetry of
matrix ?; if a finite element expansion is employed in ponjunction
with virtual work Eq; 81, thé asymmetry of the Y matrix will cause
the set of discrete equilibrium equations to be also asymmetric.
Although the solution of asymmetric sets of linear simultaneous equa-
tions presents no conceptual difficulties, there are some practical
drawbacks involved in such solutions. Coﬁsidering for the moment
direct solution algorithmsvas coded for a digital computer, core‘

storage required for the equations is approximately twice that needed
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for a symmetric set, and the time required to éolve tﬁe equations is

also about twice that needed for a symmétric.sét. With these penal-

ties in mind we>return to our originél incremental equilibrium equé—

tionsvto examine the possibility of eliminéting asymmetric terms.

In what follows we do exactly this using a physical argument cbncern—

ing relative magnitudes of incremental quantities.

To linearize the incfemental_equilibrium equations, ﬁe made
the implicit assumption that incremental deformations and rotations
are '"small". One consequence of assuming incremental deformations
to be small is that relative elongations and shears (as defined by

"Novozhilov (49)) are given by Green's ‘strain tensor (Eq..62). 1f

we furthef assume that increménfal deformations (eij) are an order

of magnitude less than increﬁental rotations (w,, = L (u, . = u, )
ij 2 *7j,i i, 377’

the linear incremental equations are rendered symmetric.

Noting the following identity,

u, .=e.. =W, S (82)

and incorporating the identity in Green's strain tensor yields

1 . |

eij —"eij + 5 (eki - wki) (ekj - wkj) - _ (83a)

or e, = + L (e,. e . -e . w  -w. . e  +w., o.) (83b)
15 %4372 Vi kg T %kt kg T ki Sk T %Ki Pk |

Clearly Green's strain temnsor and the infinitesimal strain temnsor
(eij) are of the same order of magnitude, and hence the infinitesimal
strain tensor is also of a lesser order of magnitude than the rotation

tensor. With this in mind we eliminate products of infinitesimal
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strainbcomponents to obtain the following approximate expression.

e .~ e L+ % (- e

ij ij ) : (SQ)

- +
ki ki C Uki ki ki kg
Considering again Eq. 80 and recalling our assumption

that incremental deformations are very small, we also incorporate the -

following approximation as per Novozhilov (49),

AS, . ~ AT, . ' ' (85)

and eliminate the asymmetric part of the incremental equatibns. Our

new incremental equilibrium equation is then,

. IS (T, + OT,) 8u, ds + jv Po Ty (8) buy dv - jv 0y beyy dv

= jv Op5 (= ey 8oy = Wy Bep i+ o, b ) dv 4 jv Aty Beyy dv (86)

It is to be understood that we_do not claim that soil fesponse
is characterize& by small defofmation and large rotation. We héve
merely shown thgt assuming incremental deformations to be smaller than
increﬁental rotations leads us to a set of symmetric equétions., T6~v
reiterate, it.is still our intention to capture large deformations as

well as large rotations.

Although Eq. 81 is itself an appfoximate equatioﬁ gerrning
incremental response, it more accurately describes the response of the
body thaﬁ does Eq. 86. ‘However, thé symmetry characteristics of.

Eq. 86 recommend it.. If one chooses to use Eq. 86, then a greater
number of increments must be~emp1§yéd as compared to using Eq,‘81.

The choice is not clear however since a greater computational effort
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is required per increment if the asymmetric equations are employed.

Actually, the.choice we make here is governed By OtBer
factors. Although the soil response we attempt to predict'here is
highly ﬁonlinear, material nonlinearities dominaﬁe géométrié nonlineari-.
ties. increment_size will Be governed by the severity of the material
nénlinearities and hence even a rélatively crude approximationbcan
cépture the geometric nonlineafities. With this in mind we use hefe

the symmetric incremental equilibrium equation, Eq. 86.

3.5 Incremental Finite Element Equations

. We first recast Eq. 86 in matrix form for the two-dimensional

plane strain problem. Some matrix definitions follow:

cu
o) = (872)
T .
rr} = | Tll | | (87b)
N 2,: . ‘ ' .
O
{F} = {F;r | G
. 11 A
{r} = Tos 0 (87d)
T12
. €11
fe} = ey, (87e)
Y12
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+ 0y, [-

+ 0y, [~ elz_éw - @5 e

. where
Noting that
and
we have;
955 & ey 89y -

W, .

Y12

€11
e .
~ 22
{e} = v
~ N AVEE
W
. 0'11
{o} = 4 %22
j %12
= 2 e =E+EL_I?:
12 BXZ Bxl
Wy = Wy =0
Wip =W
Wy = 70
Bey s F Oy S0 y) =9y

ey, bw+ wd e22] + 0y [ezz sw -

+ wdw] -

w8 ell]

[e21 dw + wd e,

(87£)
- (87g)

(88)

(89a)
(89b).
(89¢)

+‘w6w] ,

(90)

- Finally, noting the symmetry of the stress and strain tensors, the

right hand side of Eq. 90 can be written in matrix form as,

T — .
6e11 0
6e22 0
6Y12 0
dw L-o o
12

= 16817 [a] 12}

0

12

5

0 "912

0 012

o %(011"022)»
1179920 ©17795,)
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where superseript "I" denotes matrix transpose. Wé'notevthat 7y

is a symmetric matrix.

The incremental virtual work expression in matrix form is

thus

[ oeudt {z+at) ds+ [ oo {60} (R} dv - [ {se}” {o) av
=TT Al S v [ (et fatt v (92)

Consider now a generic finite element. We write in symbolic

form
o} = njfvy 93
where {v} is a vector of nodal displacements referred to the global

fixed Cartesian frame, and [N] is a matrix of coordinate functions. -

In addition we write,

il

(=010 o ow

R - A B e

Matrices {v}, [N],A[B] and [ﬁ] for a éonstant strain triangle are

explicitly defined in Appendix II.

We now rewrite Eqg. 92 for a single elemeﬁt. Aithougﬁ
the equal sign is retéined,AQe recogniéé that we have true equality
only when the contributién of-all eiements is summed in the manner of
the conventional direct stiffness method. Element surface integrals
are identically zero unless part of the element boundary is coincident

with the body boundary. We have thén,
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e TN frearbas+ [ o (sv)  NIT (RG)) dv- [ fovdT (837 o] av
e T ET I E e [ T e o6

Since Eq. 96 must be satisfied for all kinematically-admissible

virtual nodal displacements we have,
{op} = [ [EJT () [B] av {v} + [ 1T (ar) av (0 (o)
v v o
where ve compute the nodal force vector as
(oe) = | T f1 s an) s + I l? (e} av - [ 81" (o} av (98)
- o e
We introduce the éymbolic constitutive law, -
(or) = 0] fe} = (0] (1 0w} o9
CHence )5} o [ (17 [a) $)av (v] + [ DI Bl a ) (00
. v Yy S

We label the tangent element stiffness matrix as [K], where

CmW=kJelkd Qo
=md )= BTl o)
and I S ST ) (5] av o3

We recognize [Km] as the conventional infinitesimal stiffness matrix
and [KG] is the so-called geometric or initial stress stiffness matrix.

The stiffness matrix is referred to the global reference frame.

—54-



3.6 Preparation for the Next Increment

Before analyzing a new increment we must determine the
Eulerian stress ténsor, the mass density and element matrices [N],

[B] and [ﬁ] in the subsequent configuration. We have

- 2 . 2 - .

Oy = Typ SOST® + Ty, sinw - T, sinZw _ (104a)

- = .2 2 1 ) ' ‘_ Vi

Opy = Tyq Sin"w + Ty, cos™w + T, sin2w (104b)

G, = 2 (T -7 5 sinZw + T, cos2w : (104c)
1272 Y11 7 T2 12 - e

where cij is the Eulerian stress tensor in the subsequent configura-

tion and Tij is defined by Eq. 76. Also

Po

ctTve, 0™
11 .

. and matrices [N], [B]; and [gj are defined with respect to the sub-~

sequent geometry.
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4. INTEGRATION OF THE DISPLACEMENT.RATE'EQUILIBRIUM EQUATIONS

4.1 .Introduction

In Chap. 2 we developed a constitutive matrix relating stress
rate and strain rate, and. in Chap. 3 this matrix was‘uséd in'the‘
formulation of the tangent stiffness of a generié finite element.
A.direct sum of element stiffnesses and load vectors &ields avset.of
dispiacement rate equilibrium equatioﬁs for the diécrétized body.

This chapter concerns the integration of these equations.

Since we employ here the so-called incremental plésticity
theory in which thé materiai résponsg is loéd path dependent, we'déal
‘with displacement rates rather than displaéements.' If a ndnlinear
elastic material_model had been consideréd, we would have had the
option-of formulating equations in terms of displacements and, perhaps,
solving these equations iteratively for any épplied load. Here we
do not have thaf option and; although iterative techniques can be
employed in.the.solutidn, we.are essentially dealing with an integra-

tion procedure, not an iterative procedure.

The displacement rate equilibrium equations are written as

follows,

(k] fv} = {P} - (106)
where V and P are the displacement vector and load vector respectively
of the discretized body. Matrix K is the current tangent stiffness

of the discretized body and is a function of the current stress state

and current configuration of the body. If plastic unloading is
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admitted, the tangent stiffness is also a function of the displacement
rate vector. As before, the super dot denotes rate and in particdlar‘
it implies differentiation with respect to a time like parameter

denoted by t. An initial condition associated with Eq. 106 is
fv(e = 00} = {0} = - Qo7)

A numerical integration technique is utilized here in which
the applied load history (or applied displacement history) is divided
into a finite number of increments. In the next section we discuss

various methods for numerically approximating incremental response.

4.2 Determination of Incremental Response

All of the methods discussed here can be roughly described
as forward integration techniques. Some involve iteration while some
do not. Some utilize directly the tangent stiffness while others do

ndt.

Euler Integration Method

Perhaps the most obvious way of approximating the response
in an increment is to use the Euler.integration method (38) in_which.
fhé tangent stiffness at the beginning of an increment is used'to.
obtain a linear approximation for incremental response. For example,
referring to Fig. 15a, we suppose that the solution at poigt A is
kﬁown and we wish to determine incremental displacements AV associated
with the applied incremental load AP. We project along a tangent'at
point A to obtain an approximate solution dehoted by point B. We

can expect that after a number of increments the approximate solution
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will diverge from the true solution as indicated in Fig. 15b.

In conjunctioﬁ with a finite element.approach, vériations
of the Euler integration method have beén used by Pope (53);'Sﬁedlow
ét'al (70), Marcal and King (43), and Yamada and Yoshimura (78) to |
solve elastic-plastic problems. Pope (53) used a modified Euler

'aéproach which accounté for unloading of'previoﬁsly plastified elementé
' aé well as yielding of previously elastic elements. Since.this
‘information can not be-knowﬁ a priofi, an iterative séheme is used.
Each iteration involves the solution of a set of linear algebraic
equations. Marcal-and King (43) used an approach suggested by Marcal
(41). Elements which yield for the firét time_duriné an increment

are assigned a weighted average of elastié and elastic-plastic stiff-
ness, and.thus an iterative scheme is required. Yaméda and Yoshimura
(78) usedenlEulgr approach, however, only one element per incfement

was allowed to yield.

Runge-Kdtta Méthod

Richard and Blacklock (57)vused a fourth order Runge—Kutté
method (38) to soive anvelastic-plastié problem. Although the solu-
tion of four sets éfvlinear equations is required per incremenF; the
methodeés.shown to be clearly superior to Euler's method, at least

for the partiéular problem considered.

Strickland et al (69) treated geometrically nonlinear
structures using an initial value formulation. Both a fourth order
Runge—Kufta technique and an Adams predictor-corrector method (38)
were used to solje the equations.
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Initial Strain Method

A number of incremental solution techniqﬁes, which do not
require formation of the'tangenf stiffness, have éppearedvin the
literature. One of these techniques, utilized in elastic—blastic
pfoblems, is callea the iﬁitial strain method. Consider ﬁow the

analysis of an ihcfement; The stress ratg—strain'rate eqqation is
(1) = [bj ey oy
If we employ fhe Euler method, the:incremental COn;titutive relatidn-
ship is,
far} = [p ] fe} S : (109)
whe?e Do is the eléstic—piastic cénstitutive matrix gvélqated‘ét the

beginning of the increment and, as in the last chapter, e denotes

incrémental strain. An equivalent constitutive relatiomnship is

far} = [0%) (fe} - {Ph) - -~ (110)
1 where De is the elastic constitutive matrix. If somehow we knew the -
value of the incremental plastic strain vector, we could use Eq. 110 -

rather than Eq. 109 to evaluate element stiffness. Eqﬁation 100

would thus become, neglecting geometric stiffness for the moment,
fae} = [ (877 [0°1 [8) av {v} + [ [8]" [0°) feP} av (1)
Y o v : o

The second integral thus corresponds to an effective load vector which

can be shifted to the left hand side leaving only the elastic stiff-

ness on the right.
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Galiagher ef al (29) sugggsted this apﬁrqach for the analysis
of linear elastic, hardening materials sufferiﬁg small displacements.
The global elastic'stiffness matrix is tﬁﬁs the same for_eéch incrément
and need be inverted or triangularized only once. .The incremental
plastic strain vector determined in the immediately preceeding in-
crement is'uéed to estimate the incremental plastic strain vector in
the increment being analyzed. For example, once incremental strain
and incremental stress have been defermined, the iﬁcremept of plastic

strain vector can be computed as
fePh=fe) - 7" (b ] fe} (112)

°r (P} = o 77 far} - %) 4ae} (1)

where superscript -1 denotes matrix inverse. Equation 112 is associated
with the so-called constant strain method of computing plastic.étraiﬁ,
while Eq. 113is'associated with the éo—called constant stress method
(39). As hés often been noted the constant stress method breaks down
iq the presence of peffect plasticity since matrix D0 épntains no
inverse. The initial strain teéhnique as pfoposed by Gallagher et

al (29) was used by Lansing et al (39) and Armén et al (4) to analyze

eléstic-plastic.problems.

Considering again Eq.ullo, if we could choose an ‘incremental
_plastic strain vector such that the incremental solution satisfied

Eq. 109, the initial strain ﬁethod would be identical tdan Euler
method. This suggests an iteration technique in which we éelect

an initial incremental plastic strain vector (perhaps that from the
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previous increment), solve for incremental response, and compute a’
new estimate of the incremental plastic strain vector. This procedure

would be continued until convergence was obtained.

The above approach was suggeéted by Argyris (3); A somewhat
similar technique was proposed by Capurso (11), where a proof of
cenvergence was presented. An interesting variation of .the method
was used by'witmer and Kotanchik (76) to analyze perfectly plastic
materials. The iterative technique is such that the total stress
state at the end of the increment is guaranteed to'satisfy the yield‘
inequality, while the incremental stresses and incremental strains .
satisfy constitutive Eq. 109 where, however, matrix D0 is now evaluated

at the end of the increment.

Mendelson and Manson (46) used an initial strain iterative
approach to solve simple problems using deformation plasticity.
Mendelson (45) presented a generalization of this procedure for
incrementally plastic'materials. iThis,approach appears to yield n.
tangent stiffness solntion where the tangent stiffness is evaluated '

at the end of the increment.

Initial Stress Method
.Zienkiewicz et al (84) discussed a so-called initial stress
_iteration technique for eleétic—plastic problems. ‘As in the‘initial
strain technique only the elastic stiffness need be formulated and
triangularized. A first estimatebof the incremental stresses is
obtained from an elastic solution. »A‘revised estimate of the incre-
mental stresses is obtained from
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fat} = [D] fe} - | - ' (114)

. where the constitutive ﬁétrix is eValuatéa at the beginning of fhe
increﬁent. The new estimate of incremental stresses will in general

. not Satisfybequilibrium for the discretized body. The resultant nodal
force unbalance is'then distributed using the already reduced elastic
étiffness. This proﬁess is continued until convergence is obtained.

At each stage of the iteration process the constitutive matrix is
évaluate& using the most receﬁtly‘determined stress étafe.' Thé initial
stress technique as proposed by Zienkiewicz et al (84) is similar to

the so-called modified Newton-Raphson iterative technique (38).

A variant of the initial stress ﬁethod was préseﬁted by
Zienkiewicz and Nayak (81). A first solution for the 'strains is
obtained by hsing the tangent stiffness at the beginning of the
increment (initial tangent Stiffhess); An associated stress state ié
then'obtaiﬁed by numericélly integraﬁing‘the stress rate-strain rate
equations over tﬁe fifst estimate of the incremental strains. Since
fheée stresses can.dot be expected to satisfy equilibrium, anodal
force unbalance exists.. We can distribute the unbalanced nodal forces
using either the current téngen£ stiffness or the initial tangent
stiffness. Again this broceaure is repeated until convergence 1is
obtained. If'at each stage, the current value of the tanggnt,stiff-
ness is used to distribute the unbalanced.nodal.forces, the method is
similar to a Newton-Raphson»iteration (38). 1If on the other hand,
the initial tangent étiffness is always used, the method is similar

to a modified Newton-Raphson iteration.
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The accuracy of the iterafion procedures just described is
pf_course dependent upon increment size as is the case with all of
the methods discuésed'here;b Evén if a‘Newton-Raphson like p?oqedure
is employed we must sfill use a féirly large number of increments ;
in order to obtain an.accurate solution. This is the case régardiesé
of the.convergence criterion used and simply reflects the fact that

we employ incremental plasticity theory;

4.3 The Mid-Point Integration Rule

" We use here the so~called mid-point integfation rule to
determine incremenﬁal.response.. This technique has been used previously
.by Felippa (25), Akyuz‘énd Merwin (1) and Ferhandez and Christian (26)
to solve elastic-plastic, geometrically nonlinear problems. A non-
_linear one-dimensional load displacementvcurve is shoﬁn in Fig. l6a.
Presumably.at point A the true solution is known and we wish to appréxi;
méte incremental displacement AV associated with.applied iﬂcremental

load AP. -

The mid;éoint integration gule is motivated by thé idea that
the secant stiffness, denoted by line AD, can probabiy be closely
approximated by the tangent étiffness evéiuated at mid—iﬁcrement
(half of the load increment). The mid-increment stiffness, of course,
is not known but we can estimate it. Referring to Fig. 165, wé firéﬁ

“apply half the incremental load and use the tangent stiffnesé evaluated
at point A to approximate tﬁe mid—incrgment solution denoted by point
B. We subsequéntly apply the compléte incremental load and use the
taﬁgeﬁt stiffness evaluated at point B to obtain an approximate
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incremental solution denoted by point C. In each increment we thus -

solve two sets of linear, simultaneous, algebraic equations.

Herein the elastic-plastic constitutive matrix is modified
at mid-increment to reflect mid-increment étresseé. ‘However, héither
the geometry nor the geometric stiffness matrix is updated at.mid-
increment, rather their value at the beginﬁing of the increment is
used to compute mid-increment tangent stiffness. This was done in
order to save computation time, under the éssumption that geometric

nonlinearities would not be as severe as material nonlinearities.

4.4 Plastic.Unloading

In any elastic-perfectly plastic body with a nonuniform
stress field, plastic unloading is a bossibility even if the applied
loads or‘applied displacements are mopotonically increasing. Herein -
we check for plastié unloading following the calculation of mid-incre-

ment response.

If at the beginnihg of an increment an.element is plastié;
the elastic-plastic constitutive matri# is used to calculate the
initial tangent stiffness.‘-After mid-increment strains have been
determined we check for plastic unloading as follows. If A <0, as
defined by Eq. 18, the element has suffered plastic unloading and the
elastic constitutive matfix is used to compute mid-increment tangent
stiffness. Otherwise, the elastic-plastic constitutivevmatrix.is
utilized. Any élement which has been found to load plasticaily af

mid-increment is assumed to still be plastic at the end of the increment
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regardless of whether the end-of-increment stress state lies inside

or outside .of the yield surface.

4.5 Stress Scaling Back to the Yield Curve

Considgr for the moment an element which is found to be
plastic at the beginning of an increment, and assume that the stress
state lies exactly on the yield surface. A schematic diagram including
a‘yield curve and the initial stress state, denoted by point A, is
shown in Fig. 17a. " At the end of the increment the stress state,
denoted by point 3, probabiy lies somewhat outside of the yiéld surface.
After a number of éuch load increments have been anaijzed,_the'stress
" state may lie fér enough“from'the'yield curve to render the analysis
of subsequent increments meaﬁingless. .A possible streés.path produéed

by a number of increments is denoted by broken line ABC.

' In ofder to correct this situation We'scale.stresses back
to tﬁe yield surface at thé end of each increﬁent and at mid-increment.
Since tﬁere is nolunique way.to scale, we arbitrarily require thaﬁv
‘the hydrostaticbcomponent and principai directions of the stress temsor
reméin unchanged. A schematic stress path associated with stress
séaling is shown in Fig. 17b. As can be seeﬁ in the figure, stressés

are adjusted back to the yield surface at the end of an increment.

In general the scaled stressed can not be expected to satisfy
the equilibrium equations of the discretized body. We thus compute
an equilibrium correction vector as per Eq. 98 and apply this load

vector, along with the prescribed loads, in the next increment.

-
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4,6 Elements Which Yield During an Increment

. We have yet to discuss the transition of an element from an
elastic to a plastic stress state. We discuss now a technique for

treating elements which yield during an increment.

Assume that the stress state at the beginning of the incre-
ment lies within the yield surface. We then use the elastic consti-

tutive matrix to ‘compute the initial tangent stiffness. Let

1/2

k., = op + J2

1 .(115)

where p and J2 are evaluated at the beginning of the increment.

Similarly, to evaluate k, we use the ‘stress state at mid~increment,

2

and k3 is to correspond to the stress state at the end of the incre-

ment, which we do not yet know. However we can estimate k3 as follows,

ky =k + 2(k, - k (116)

3 1 1)

If k3 is greater than the yield value k, we can expect that the element

will yiéld during this increment. In a somewhat arbitrary manner
we require that if
“k, -k

g~ Ky
K-k, =3 o @n

N

1

the elastic constitutive matrix is used to compute mid-increment

tangent stiffness. If
2
>._..
3 ‘ (118)

we use a weighted average of the elastic and elastic-plasticconstitutive
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matrices in a manner similar to Marcal (41).

To compute the averaged matrix, the stress state at mid-
increment is scaled to the yield surface using the technique described
in the previous section. The averaged constitutive matrix is then

computed as: '

D)y, =m 0°1+ Q=) D). A1)
whére v k - k1
' m= 5o (120)
2(ky f~k1?

and D is evaluated at the scaled stress state.

if an averagedAmatfix has beenAused to determine mid-increment
stiffness, the element is assumed to be plastic at the end of the
increment regardless of whether the stresses lie inside or outside of
fhe yield surface. The finai stress state is then scaled to the
yieldISurface; If the_elastic constitutive matrix has been used to
compute mid-increment stiffness, ﬁe chéck for yieiding at the end of
the increment.‘ If the stress state lies outside the yield surface
we‘scale back to yield in preparation for the next increment. Other-
ﬁise we 1eave the stress state unchanged and use the elastic constitu-.

tive matrix to start the rnext increment.

4.7 Solution of the Linear Algebraic Equations

We use here the so-called square-root method (38) to solve
the linear simultaneous algebraic equations associated with the mid-

point'integration rule. The banded character of the global stiffness

-67-



matrix was considered when coding this procedure for the computer.

A numbef.of investigatoré have preferred to use iterative
- procedures to solve the linear equations involved in elastic—pléstic
incremental analysis (1) (43). Iterative methods are appealing sin;e
we can obtain a reasonably good iniﬁial guess for the solution inAthe
current increment by using.the'known'solution for the'previous incre-
ment. Most investigators have, however, used direct methodé and we

follow suit here.
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5. CHECK PROBLEMS AND NUMERICAL EXPERIMENTS

5.1 Introduction

There exist no closed form solutions>for the class of
problems being considered here, that is, a punch beafing on a finite
stratum (or infinite haifSpace) of elastic-plastic matérial under
-the conditions of blane strain. Two extreme.parts of the small dis-
piacement solution are ‘however known--the linear elastic solution and
the plastic collapse or limit load solﬁtion; at leést for some mat~
erials; However we have no absolﬁﬁe check on the accuracy of the elas-

 tic-plastic intermediate response.

The numericalimethods used here, the particular algorithms
used in the compufer program as well as possible miétakés in the com-
puter coding‘are all potential sources of error. In order to demon-
strate that the computer program is giving réasonable and believable'
résults, a number of éxample_problems aré presented in this section.

We first discuss fﬁe éolutions of some simple but nontrivial probléms
folioﬁed_byvsolﬁtion of complex problems that have been numerically”
analyzed by other investigétors. Finally we present the results of
some numerical experiments in wﬁich the effect of some of the yariables

associated with the numerical methods used here are investigated;

5.2 A Plane Strain Compression Test

Consider a hypothetical one-dimensional plane strain
compression test of an elastic-perfectly plastic Mohr-Coulomb material.

Since the Mohr-Coulomb yield function is independent of the out-of-plane
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sgress, the applied stress at which tﬁe material first yields is
identical to the max imum stress.. However, this is not the casebfor

a Drucker-Pragér materiai. After first yield, additional stresé can
be applied and the change in the édt;of—plane stress“is just sufficient

to maintain the stress state on the yield surface.

For a Drucker~-Prager material the stress at first yield is
dependent on Poisson's ratio, and the difference between the maximum
stress and the stress at first yield is most pronounced for a Poisson's

ratio of zero. Consider for example the following material parameters,

E = 500,000 psf
v=0.

~ C = 500 pst
o = 30°

With o and k defined by Eqs. 4 and 5 respectively, the applied stress
at first yield is 990 psf and the exact maximum applied stress is

1730 psf (same as for a Mohr-Coulomb material).

. We show in.Fig. 18 thé complete Drucker—Prager‘stress-
strain curve for the material parameters shown above, as obtained
from the computer program utilized here. As would be expected first
yield occﬁrs at about 1000 psf.and the maximum stress is 1725 ésf.

The open circles represent actual computed points.

5.3 An Elastic Large Deformation Problem with Uniform Stress

Consider now the plane strain problem shown in Fig. 19 in

which an elastic specimen is bounded on three sides by smooth rigid
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walls; and a uniform stress is applied to the fourth side. The linear

solution to the problem is, of course,
c=E (/i) , ‘ (121)

where E (1 - V)

TAF V) A - 2v)

E (122)

_ Lo is the original length of the specimen and u is the vertical dis-

placement of the applied stress.

If displacements are large we might relate the stress to

the so~called logarithmic strain, that is,

c=Fe 2

4
where U 4y Lo - 1
ep=| Too=In [& o5l = In (1 V) )] (124)
o © ) o
Thus o =E an[l - tu/kéf] | - : (125)

A nondimensionaiizéd plot ofvthis equation is shown in Fig..19 along
with two numericél solutions, one obtained using six iﬁcrements.and |
one with twelve increments. It appears that the approximate solution
converges towards the true solution as the number of iﬁcremen;s

increases.

5.4 Notched Tensile Speciﬁen

A number of investigators have presented numerical results:
for the plane strain notched tensile speéimen (43) (84) and we also

consider this problem here. One half of the specimen, along with
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relevant dimensions and material properties, is shown in Fig; 20; wheré
o = 24.3 kg/mm® is the yield stress iﬁ simple tension. The matérial
is assumed to be elastic-perfectly‘blgstic with a von Mises yield'
éondition and, in terms of the model‘used here, o = Q and k = ooffé =

14.03 kg/mm®. Kachanov's (37) slip-line solution for this problem gives

/Go = ,8925 ' ' (126)

[0
. max

where O ax is the maximum or collapse value of the applied stress o.

For o = 24.3 kg/mmz, the limit stress g = 21.6 kg/mm°.
) max

The finite element mesh used here is shown in the left hand
half of Fig. 20 and consists of 105 nodes and 169 triangular elements;
This mesh is similar to, but not exactly the same aé, that used by
Zienkiewicz et al (84). In Fig. 21 the applied stress is plotted
versus the centerline displacement at the end‘of the specimen. The
curve reﬁains almost linear ﬁp to 18 kg/mm?, after which it bends
over quite rapidly. A fairly well defined limit load is reached at"
about 22.5 kg/mmé; only 4 percent above the slipline solution.
Zienkiewicz et al (84) reported a so-called lower bound for the limit
load of 19.4 kg/mm®, that.is, this was the last load at which their.
itefative procedure convergéd. This solution represents a true lower
bound fof the disgrefized body since the iterative proéedure utilized
ensures that the discreté equations of equilibrium and the yield
inequality are satisfied‘at the end of each incrémentﬂ. However this
may not represent a lower bound for the continuum since the continuum
equations of equilibrium are in general not satisfied by a finite

element solution.
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Zones of yielding for loads of 15 and 18 kg/mm® are shown
in-the.right hand half Qf Fig. ZQand are similar to those reported
by Marcal.and_King (43) and by Zienkiewicz eﬁ al (84). Yielding stérts.'
at the notch root and spreads upward and toward the éentériiﬁe. At
_18 kg/mmz the zone of yielding has jusf extended across the entire
speéimen. Until this point, the load aisplacement response is essen-

tially linear and afterwards it becomes highly nonlinear.

5.5 Uniform Strip Load on Undrained Clay

Apparently Hoeg, Christian and Whitman (35) were the first
to treatbsbil as aﬁ elastic—perfectly plastic material for the pﬁr-
pose of obtaining the complete load displacement responée of a strip
footing. A shallow layer of undrained clay, shown in Fig. 22; was
vanalyzed using the finite difference like technidue of Ang and Harper
(2). The Tresca yield céndition and_its-associated flow rule'weré
-utilized with a cohesive strength of 17.5 psi, and the footing load

was assumed to be uniformly distributed.

 Here we solve this same plane strain proBlem using the finite
_ element method-and the von Mises yield condition. ‘Both yield condi-
tions shouidlgive the same limit load (k defined by Eq. 5) but the
intermediate response may be différent.i Two different meshes are
utilized here. One mesh is uniform (Fig. 22) and is similar to that
used by Hoeg et al (35), while the other is nonuniform (Fig. 24)

and is similar to.that used here for a deeper soil stratum. Boundary
conditions in both mesﬁes are identical to those used by Hoeg et al
(35). Thé base of .the clay stratum is rigid and perfectly roﬁgh,
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while tﬁe vertical boundary is assumed to be rigid énd.perfeétly Smoqtﬁ.
The uniform mesh is shown in the left haqd half of Fig..22 aﬁd'Consists'
of 120 nodes and 98 rectangular elements. Each rectangle is defined
by four constant strain triangles. Since>the mesh is perfectly uniform
we are actually considering a loéding width of 10.28 ft._rather than
10 ft. as used by Hoeg.- W¢ assume that this will make little difference'

in the solution and subsequent results show this to be the case.

Results for the uniform mesﬁ are shown in Fig. 23 where the
applied pressuré is plotted versus the centerline displacemeht directly
beneath the load. The closed circles correspond to actual computed
points indicating thatlsixteen incremenfs'were used in the solution.
This solution agrees almost point by point with that presented by Hoeg.

vwé'obtained here a well defined numerical limit load of 92 psi thle
"Hoeg reported 90 psi. Both values are in remarkable agreement with

. the exact value;of 90 psi.

Valliappanv(73) also solved this same problem using the von
Mises yield condifion and a somewhat coarser finite element ﬁesh of 
~ 94 nodes and 150 triangular elements. As might be expected his solu- .
tion, also shown in Fig. 23, lies above that presented here.. The
initial stress method (84) was used to integrate the eqﬁations.and

the last load at which this iterative technique converged was 78 psi.

Zones of yielding defined by the rectangular mesh are shown
in the right hand half of Fig. 22. These zones agree fairly well with

those presented by Hoeg for loads of 53 psi and 90 psi.
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A nonuniform mesh consisting of lOb nodes and 90 elements
(Fig. 24) was also used to analyze this problem. Each quadrilateral
in the honunifdrm mesh was divided into four constant strain triangles.
Near the edge of the footing this mesh is fihér than the uﬁiform mesh
while away fro@ the footing edge this mesh is somewhat coarsex.  The
.tw0 meshés.gave_nearly identical results except near the maximum load

where the nonuniform mesh overestimated the limit load by 7 percent.

For this particular problem in which the footing load 1is
uniformly distributéd, there is no need for such a fine mesh near the
edge of the footing and the nonuniform mesh is probably to coarse away
from the footing. However, comparative analyses for a rigid footing
show the nonuniform mesh to Be superior to the uniform mesh. Since
We are primarily concerned here with rigid footing and deeper soil

strata, a nonuniform mesh will prove to be a necessity.

5.6 FElastic Cantilever Beam

In order to investigate the geometrically nonlinear algorithms
used in the computer prbgram we consider here a cantilever beam
suffering_large displacements. Altﬁougﬁ the nonlinear elastic solu-
tion for slim cantilever beams ié known (rotations 1érge, strains small,
shearing deformation negligible) we will not be able to check with thié
solution because of the relative coarseness of the finite element mesh.
We will however be able to get some feeling for the affect on the

solution of geometric stiffness and equilibrium correction.

The cantilever beam is 10 ft. long with a 1 ft. square cross-
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section. Poisson's ratio is eqdal to zero so that the out—of—plade
normal stress is identicélly zero. A uniform finite element mesh
was utilized consisting of 147 nodes and 240 triangular elements
ﬁith 7 nodes through the depth of the beam and 21 nodes along thé
length. Portions of the.mesh are shown in Fig. 25. The applied
load waé assumed to be distributed parabolicélly over the cross-
section. Consistent nodal forces associated with a unit applied

load are shown in Fig. 25.

Some reéults are showﬁ in Fig. 26 where the nondimensionalized
force EI?/BEI is plotted versus the nondimensionalized vertical dis-
'placement'A/L at the end of the beam. Here L is the beam length, P
is the applied load and I is thé cross-section moment of inertia. The
lower solid line corresponds to the small displaceﬁent soluﬁion for
the discretized beam and is hence linear. The upper solid curve
'corresponds to a nonlinear solution obﬁainéd using-l6'increments{

The three additional solutions were obtained using 8 increments.

" The solution denoted by open circles utilized the complete
integration scheme as'descfiﬁed in the preQious chaptér. The solution
denoted by triangles did not use equilibrium correction, while the.
solution dénoted by open squares utilized neither equilibrium correc-
tion nof the geometric stiffness.matrix. Comparing the three solu-
tions with the sixteen increment §olution, which we expéct is clqse
to the exact éolution, the complete integration scheme is clearly

superior to the alternate schemes.
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The power of the equilibrium correction Vectér is parti-
cularly noteworthy. Not only does it improve the solution but it
tends to maintain a constant percentage error. The percentage error
associated with the alternate solutions tends to grow with each

increment.

5.6 Rigid Strip Footing on a Soil Stratum

Ih this section ﬁe consider a number;of variables associated
with Ehe finite element discretization and the numerical iﬁtegration’
" technique used heré. The problem used for the experiments is the
' same as that considered in the next chapter, that is, a 5 ft. wide
rigid strip footing bearing on a 50 ft. deep éoii stratum supported
by a rigid rough base. The horizontal extent of thé stratum was
arbitrarily set at 50 ft. from thebfooting center and a smooth rigid
boundary was prescribe&. The following soil‘paramete;s were used 

E = 500,000 psf

v =.3
C = 500 psf
p = 30°
Y = 0.

where v is soil weight per unit volume.

'Finite Element Discretization

Three finite element meshes, shown in Figs. 27, 28 and 29,
were utilized for the numerical experiments. FEach mesh is composed
of a number of triangular and quadrilateral regions.. Three different

arrangements of triangles were used to define stiffness for the



quadfilateral regions. In.the first arrangementa pictured in Fig. 303,
the quadrilateralé are divided into two triangles with the dividing
diagonal having the same orientation for all quadrilaterals; The
éecohd arrangement is shown in_Figf 30b, and here &he diagonals are
sfaggered. In the third arrangement, shown in Fig.l30c, the quadri-
lateral is subdivided into four triangles connected to a fifth node
located at the quadrilateral centroid. Static condensation is used

to feduce the 10x10 quadrilateral sﬁiffness to the desired 8x8 (74).
Triangle stiffness is based on‘a linear displacement'expaﬁsion

(constant strain triangles).

All three meshes, as shown in Figs. 27, 28 and 29, are finest

near the corner of the footing and get progressively coarser as the

‘distance from the corner increases. It is not the aim here to capture .

the stress singularity at the corner since it is well known that it
is difficult or perhaps impossible to do this with anaiytic finite
element expansions (47). The aim here is simply to make the mesh

fine where stress gradients are high.

We discuss now the results of four ﬁumerical experiments
in which the effects of.mesh size, element arrangement; increment
size).andistress scaling with associated equilibrium correction were
invesfigated. Since the footing is assumed to be rigid, dispiacemenfs

rather than stresses are prescribed beneath the footing. For all of

"the numerical experiments the footing is assumed to be smooth and

displacements are assumed to be small, that is, for the moment we

consider only material nonlinearities. The theoretical bearing capacity
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obtained by Prandtl (56) is q, = 15,040 psf. Shield (65) has shown that
the Prandtl solution is the true limit load for weightless soils with

a Mohr-Coulomb yield condition and the associated flow rule.

Effects of Mesh Size

Results for the three meshes are shown in Fig. 31 where we
plot average stress beneath the footing, ¢, versus Qerticél displace-
ment of the footing. Elgment arrangement 3 (Fig. 30) was used to
compute quadrilateral stiffness for the quadrilateralAregioné shown
iﬁ Figs. 27, 28 and 29, and an increment size of .04 ft.>of fooﬁing
"displacement per increment was used. Although the curves shown are
“smooth, thefe were some osciliations in thé solutiohs, particularly
at the higher loads. As miéht be expeéted, the finest mesh.gave fhe

softeét responée. Even with £helfinest mesh there is still a notice-
ablé difference between the theoretical pléstic.limit load and that
determiﬁed from the numerical finite element solution.  If we take

“the limit load of ﬁhe discretized body_aésoéiated with mesh 3 (Fig. 29)
to be. 18,5001psf, then this load is apéroximately 23 bercent greater

than the theoretical limit load.

Effects of Element Arrangement

Figure 32 shows the results for the three element arrange-
ments for the qﬁadrilateral régions shown. in Fig. 28 (mesh 2) and .04
ft. of footing displacement per increment. Most remarkable is the
llarge differenée in the solutions obtained from arrangements i and 2.
Many writers have commented on the sfress discontinuities between

adjacent elements when constant strain triangles are used in finite
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element analysis (forAa récent example see Owenbet al (52)). In
regions where the stress gradient is high, element stresses ten& to
osciilate from element to element. "This tendency is particularly
noticeable in element arrangement 1 where stresseé at the higher
loads oscillate from tension to compression; Thé best solution

was obtained with element érrangement 3, but we.should note that
computation time was approximateiy 40 percent greater than the time

required for arrangements 1 and 2.

Effects of Increment Size

The effect of the_size of the footing displacement increment
‘is shéwn in Fig. 33; Mesh 2 (Fig; 28) with element arrangement 2
for the quédrilateral regions was used for the three soiutions. - Three
diSplaéement increments were utilized, 0,02, 0.0a-and 0.08 ft. per
increment. Up to a footing displacement of about 0.7 ft. the solutions
are essentially the same.  After this the three curves diverge somewhat
with the smallest incrément size.giving the softest response. We
can see that the integration.échehe is nof highly’sensitive'to increF

ment size, at least at low and intermediate load levels.

Effect of Stress Scaling

In the context of geometrically nonlinear analysis, Strick-
land,‘Haisler, and Von Riesemann (69) have shown that correcting for.
nonequilibrating stresses significantiy increases accuracy when used
- in conjunction with an incremental Euler integration approach. The
cantilever beam analysis presented here corroborates.this conclusion.

We show now that for elastib-plastic analysis; scaling stresses back
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to the yield surface and. subsequently distributing the unbalanced
nodal forces during the next increment is also computationally effi-

cient.

In Fig. 34 two of the solutions were obtained without scaling
stresses back to the yield surface after each increment. Thus, to
within round-off and trﬁncation errors, stressés détermined at the
end of each increment satisfied equilibrium. A third solution, shown
by open circles in.Fig. 34, was obtaiﬁed using stress scaling and

equilibrium correction. We note first of all that for the same

. increment size there is a noticeable difference in the solutions with

‘and without scaling. We note secondly that the solution without

scaling can be made to agree closely to the solution with scaling by
using a very small increment size. We can thus conclude that for a
small increase in computational effort, we get a significant increase

in accuracy by using stress scaling with equilibrium correction.
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-6, ELASTIC-PLASTIC ANALYSES OF A TFTOOTING ON HOMOGENEOUS CLAY STRATA

6.1 Introduction

We consider here a 50 ft. deep soil stratum loaded by a
5 ft. wide strib footing. The width of the stratum is taken to bé
50 ft. The base of the soil stratum is assumed to be rigid and perfectly
rough, and the footing is also assumed to be rigid and perfectly rough.
The finite element meéh shown in Fig. 29 was used for all of the analyses
pfesented‘in this chapter, where the quadrilateral regions ﬁere defined
__by four constant stréin triangles. The boundary conditions are iden-

b.tical to those shown in Fig. 29.

An elastic stratum is treated first in order to compare
the finite element solution with an existing exact.solution. Subse-
quently we consider an elastic-plastic effective stress analysis of an
qverconsolidated clay, and finally an elastic-plastic total stress
analysis of an undrained éléy'is presented, For the elastic~-plastic
‘cases both small and-large deformation analyses are consideréd, that
is, solutions are presen;ed with and without geometric nonlinearities

included in the equilibrium equations (as described in Chap. 3).

6.2 Elastic Solution for a Rough Rigid Footing

We compare in this section finite elemént éolutions for a
finite élastic stratum with exact solutions for an infinite hélfspace
(48). The finite elément solutions and the exact halfspace solution
shouid'be in gengral agreement near the-fboting but ﬁill not hecessarily'

agree near the soil stratum base., Finite element stresses presented
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in this chapter correspond to nodal stresses and were determined from

a simple average of the stresses in all triangles adjacént to a

particular node. For example, if a node is adjacent to four quadri-

lateral elements, each nodal stress would be an average of eight

triangle stresses.

Vertical and horizontal stress distributions for a Poisson's
ratio of 0.3 are listed in Tables 1 through 3. The sign convention is
shown in Fig. 1 where positive normal stresses correspond to compression.

In Table 1 contact stress distributions at the footing-soil interface

. are presented. In Table 2 stress distributions along a vertical line

beneath the footing centerline are presented, while Table 3 shows stress

distributions along a vertical line beneath the footing corner.

Referring to Table 1, both horizontal and vertical contact

stresses, as computed from the finite element method, are seen to agree

well with the halfspace exact solution, except near the footing corner.

The vertical stress components, cy,lagree somewhat less well than the

horizontal stress components, O with the différencés fanging from

3 to 10 percent. Considering now fhe streéses below the footing center-
line (Tabie 2), the veftical sfress.components; Gy, agree remarkably
well whereas the horiiontal stress components, 0> differ soméwhat.

This difference most likely reflects the finite stratum depth in the
finite element ahalysis and éhould not be interpreted aé an indicator_
that the preéént‘finite elemeﬁt>mesﬁ‘is not fine enough to capture the

true solution. Likewise considering the stress distributions beneath

~ the footing corner (Table 3) the vertical stress components agree well
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while the horizontal stress components differ somewhat.

In Tables 4 and 5 halfépace stress components are presented
for Poisson's ratios of 0.48 and.O.S,while'the cérresponding finite
element stress components aré presented for a Poisson's ratio of 0.48
only.' A Poissoﬁ's rétio of 0.5 is relevént to undrained total étress
énalysié in which clay is assumed to be incompressible. However the
displacement formulation utilized herein does not adﬁit a Poisson's
‘ratio of 0.5 since the constitutive hatrix becomes singular;» Never-
theless we can attempt to appréximate the incompressibility conditioh
by using a high value of Poisson's ratio such as 0.48f We present
‘exact solutions for both values of Poisson's ratio in order to examine

‘the validity of this approximation.

Examination of Tables 1 through 5 reveals that Poisson's
AArrati§ has little effect on the vertical stress components, dy. Con~-
sidering Table 4 we see that the horizontal contact étressés are
decreased by about 10 percent when Poiéson's ratio is reduced from 0.5
to 0.48._ However referring to Table 5, we need hove only 1 £t beloﬁ
the footiﬁg for the differeﬁce to be reduced to about 3 percent. vWe
conclude theréfgré'that we can obtaiﬁ a.reasonable approximation for:

~ the incompressible case by using a Poissén’s ratio of 0.48. We note
further the gooa_correlation between the finite element stresses and

the halfspace stresses as indicated in Tables 4 and 5.
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6.3 Elastic-Plastic Analysis of a Footing on an Overconsolidated
Stratum of Insensitive Clay

We deal here with an effective stress analysis of an over-
consolidated clay. Presumably the load rate is such that no excess
pore water pressures are generated. The material parameters utilized

in this study are:

E = 5x10° psf ~ ¢ = 10°, 20° and 30°
v =0.3 ¥y = 50 pcf
C = 500 psf Ko=1.0'

whefe Ko is the ratio of the initial in-situ horizontal and vertical
stress components. Only the friction angle ¢ is varied here with all

other parameters being held constant.

In Chap. 5 we_preseﬁted a solution for a smooth footing
bearing on a weightless C?m soil. TFor a friction angle of 30'degrees
and a cohesive strength of 500 psf, it was shown that the numerically
.determined iimit load (limit load determined from the finite element
analysis) was 23 peréen£ greafer than the exact liﬁit load. We con-

. sider here a more realistic problem of a rough footing bearing on a
ponderaﬁle soil, for which exact limit loads have not as yet been

- determined. We can, however, use the limit analysis technique of Chen
and Davidson (12) to estimate the limit loads to within 1Ato 2 percent
for the soil parametérs considered here. The approximate limit loads
are.thus 1, = 4350, 8260 and 18,720 péf for friction angles of ¢ = 1Q°,

20° and 30° réspectively.

. =85~



Load-Displacement Curves

Load displacement curves for.large and small deformation
analyses are shown in Figé. 35.through 3% for the three friction angles
_ mentioned above. The closed and open circles represent actual computed
points and the solution following each increment is ploﬁted. None of

the solutions are perfectly smooth but show some oscillations.

Considering first the small deformation sdlutions, we note -
that the limit loads are overestimated in each éase with.the error
increasing Qith increasing friction angle. For friction angles of
- 10, 20 and 30 degrees, the errors are 10, 18 and 26 pefcentrespectively.
' Considering the entire eléstic—plastic solution where the load is
'increésed from zero to failure, we know from the above discussion
that the initial part of the 1oad—displacemenﬁ curve is highly»accurate
because the soil stratum is behaving essentially as an elastic medium.
However, as the load increases we can-expect that the numerical solu-
tion presented here diverges.from the true>so1ution, given the known
error in the limit load. It is also apparent that as the friction angleb
increases, the mesh muétvbecome'finef if'the limit load is to be cap-

tured within a specified tolerance.

Consider now the éolution obtained from a large deformation
analysis.fér the case ¢.= 10° (Fig, 35). Except near4£he limitlload.
the load displacément curve correéponding to the iarge deformation
analysis is idehticél to tﬁat of the small déformation solution.
.Near‘the limit load the two curyesAdiverge somewhat with the large

deformation curve appearing to approach a limiting load oﬁly 2_percent‘
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above the small deformation numerical limit load at the displacemént
of 0.27 ft. 1In tﬁis case (@ = 10°) Qe can thué say that the sﬁall
deformation analysis is valid for all load levels up to and inclﬁding
' the limit load. Iﬁ addition the small deformation limit load is
clearly a meaningful measure of the maximum bearing capacity of the

footing.

Reférring now to Fig. 36, we can see that if the friction
angle is increased to 20 degrees, the load-displacement curves corres-
ponding to the small and lafge defdrmation analyses remain essentially
the same except near the small‘deformation limit load. Whereas the
rsmall_defdrmation curve bends over and approaches a maximum, the
lafge deformation curve continues to rise without any apparent limit.
Althoﬁgh in this case the small deformation limit load is not a true
measure of the maximum bearing capacity of the footing, it is nevef-

" theless an indicator of the load levelvat which large increases in

footing displacement can be expected for small increases in footing'load.'

Although there is a marked differénceAin the solutions by

'tﬁe small and large deformation analyses for the case when @ % 306
(Fig. 37), the two curves are still virtgally the same up tp about 75
percent of the numerical limit load. Beyond this point the solutions
.diVerge; There is no noficeaﬁle bfeak in thé large deformation curve;
_ rather the curve rises smoothly pastAthe émall deformaﬁion numerical
limit 1oad. We may conclude that for thié pérticular set of soil
paraméters, the small deformation perfectly‘ﬁlastiC'limit load solution

is not a meaningful measure of the bearing capacity of the footing. We.
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might note, however, that a friction angle of 30 degrees is higher than

‘would be expected for an overconsolidated clay.

Clearly with. all other parameters held fixed, an incréase
“in the friction angle iS‘associated with an increase 'in the difference
bétween fhe‘small andllarge-deformétion.solufions. in general if the
elastic parameters afe held fixéd while the strength parameters increés&

we can expect an increase in the difference between the two solutions.

Referring to Fig. 56, we see that for ¢ = 20°, the-footing
has displaced él@ost half a fooﬁ by the time the numerical limit load
has been feached; " The corresponding deformed surface.profile at the
numerical limit load is shown in Fig; 38. In Fig. 38(a§.the surface
profile is drawn tb scale‘while in Fig. 38(b) it is not. If the small
and 1arge_deformation solutioﬁs differ Significanﬁly we would expect
the deformed geometry and initial geométry of the soil strétuh_to differ
élso significahtlyt Figure:%3§1ear1y~shows this to be the case. We
can also see from Fig; 38 tha£.5011 deformation must be severe neér the_.
footing qorner,' In Fig. 38(b) we show a deformed surface profile fér
both small and large deformatioﬁ.éolutions;. There is a noticeable
diffgrence between the fwo profiles corresponding to similar load
levels, The footing displacement determined from the large deformation
analysis is 1éss than thét_determined from the small defo?mation analy-
~sis. This is consistent with thé 1oad—di5p1acement curves shown in
Fig. 36 where thé large deformation solution is stiffer than the small

deformation solution.
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Tn the remainder of this section we consider in some detail
the béhavior-of a soil with a friction_anéle of>20 degrees and a
cohesive strength of 500.psf.- In Figs. 39 through Ai we show stress
distributions at various load levels as obt;ined from a small deforma-
t jon analysis, and in Figs. 42 and 43 stress distributioﬂs from large
and small deformation analyses are compared._ None of these stress

distributions include the initial overburden stresses.

Stress Distributions

Referring to Figs. 39 through 41,.at a.ldad of‘1140 psf some
yielding has occurred neér the footing'corner buf most of the.soil.
“stratum is still elastic. At q = 4030 psf significant yielding has
occurred and q = 9620 corresponds to the numerical limit loaa.v Con~
sidering first the contact stress at the soil-footing interface (Fig.
39), the stress distributions at q = 1140 psf are essentially that of'
an elastic body. The vertical stress component, Gy’ atvthe footing
corner is about three times that at the»footing center. As the load
increases.and yielding spreads, the horizontalvand vertical stress
. distributions tend to Bécome flatter., At the numerical limit load
the vertical stress, cy, at the corner is only about 30 percent greater
than that at the footing center. - As would‘be ekpected the shearing
stress, Txy’ has qgmpletely changeévdirection by the time the‘nuﬁefical

1imit‘10ad has been reached.

The -shearing stress distribution at the limit load is nearly
linear up to a peak value of about 1700 psf, after which it falls off

sharply. 1If we define the maximum value of the mobilized friction
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angle between the footing base and adjacent soil to be

T - C. - ‘ . _
'1(_£EQ£.___; (127)
\ qo / .

§ = tan
m

where Tmax is the maximum value of the confact shearing stress, then

for friction angles of 10, 20 and 30 degrees, 6m = 20, 7° and 11°
‘respectively. Thus for the material parémeters studied here, a

friction anglé between foofing base and soil of 11 degrees is sufficient
to produce an essentially perfectly r§ugh condition. This is consistent

with the results of Chen and Davidson (12).

In Figs. 40 and 41 horizontal and verticél streés distribu-
tibns alqng vertical lines bgneath the fobting cenfer and corner are
shown. As tﬁe load increases and yielding spreads, the distributions
change somewhat, particularly near tﬁe footing.A Thére is a nbticeable
"change in the shearing stress distribution beneath fhe foqtipg corner

as the load increases.

Stress distributions at tﬁe numerical limit load are shown.
in Figs. 42 and 43 fdf small and large deformation analyses. Referring
first to the contact stresses shown in Fig. 42, vertical and horizoatal .
étresses Aiffef only near the footing corner, although the shearing
stresses differ all along the footing; -As can be seen iﬁ Fig. 43,
stresses beneath the footiﬁg corner differ only near the footing.
At a depth of 3 to 4 ft. beneath the footing,‘the large and small’

deformation stresses are essentially the same.
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Yield Zones

In Fig. 44 zones of yielding for various load levels ére
preseﬁted. Theoretiéally some yielding should occur near the footipg
corner for any load 1evél sinée tﬁé true solution contains a singu-~
larity at the corner. In the finipe element solution yielding occurred
in the first increment of loading (q = 1140 psf)_and a small yield zone
© near the‘footing corner can be éeen in Fig. 44. As the load increases
yielding spreadé downward and toward the fodting'centerline. The
yield zone reaches the foéting centerline at a load just below 3240
psf. The zone of yielding coﬁtinués to spread outward from the footing
'xas the load increases.. In addition yielding spreads>upward tdward
the footing until at a load of 6740 psf all of tﬁe soil immediately
below the footing is yielded. At the numerical limit load (9620 psf)

a significant portion of the soil stratum has yielded.

In Fig. 45 we show the yield zone at the numerical limit load -

O

for ¢ = 307 . The extent of yielding at the limit load ié_clearly in;
fluenced by the value of the friction angle m; As caﬁ be éeen from
the figure, small and large deformation solutions give somewhat diff-
erent zones of yielding>at similar load levels. The large deformaﬁioq
analysis produces a smaller zone_of yielding, and as partial explana-
tion for this we note that as the footing punches doﬁn into'the élay,
an efféctive sufcharge is created by the clay which now liesaaboVe the

footing base.  This surcharge should increase the hydrostatic stress

component and thus increase the shear required to yield the soil.
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Velocity Fields

Finally in Fig. 46 we show the velocity field at the numerical

limit load for a friction angle of 20 degrees. Superimposed on the

) figure is the outline of the Prandtl velocity field which is only

sﬁrictly applicable to weightless soils. However for the particular
set of soil parametefs used here, the actﬁal velocity field and the
Prandti field can be expectgd to be similar. It can be seen in Fig. 46
that the Prandtl field and the numerically determined field are indeed

similar. We can clearly identify a wedge beneath the. footing which

- moves downward with the footing. There is also an intermediate zone

- in which the velocity vectors are essentially perpendicular to radial

lines eminating from the footing corner. The veiocity magnitude can

also be seen to grow as the radial line rotates counterclockwise. A

-fairly well defined third zone exists which appears to be moving

upward and out as a rigid body. This problem was also solved for a .

weightless soil (all other material parameters unchanged) and the

“velocity field determined at the limit load was virtually the same .

as thaﬁ shown in Fig. 46, The velocity field at a similar loéd level
and as determined froﬁ a large deformation analysis is shown in Fig. 47.
It is no surprise that there is a distinct difference betweeﬁ the

small and large deformation fields since the large deformation sélution_

has yet to reach a limiting load.

In Fig. 48 the velocity field, at the numerical load, for
a smooth footing bearing on a Weightless C-9 soil is shown. The
oufline'of>a Hill like velocityvfield is also shown in the figuref
The Hill velocity field has been deséfibed by Chen and ﬁavidéoﬁ (12)
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and is characterized by gwo wedges beneath the footing rather than one
as in the Prandtl mechanism. Each ﬁedge makeé én angle of 55 degrees
with respect to the footing base. As can be seen in Fig. 48, the
numerically determined velocity field does not exactly correspond to
the Hill field, nor does it c&rrespond to the Prandtl field, although

it contains characteristics of both fields.

6.4 Elastic-Plastic Analysis of a Footing on a Stratum of Undrained Clay

We deal here with an elastié—plastic total stress'analysis
’of.a saturated undrained clay. Presumably the load rate is such that:
".the excess borewater_pressure has no chance to dissipate, that is,
- volumetric étrain is almost zero throughout the apnalysis. The material

parameters utilized in this study are

E = 1x10° and 1x10° psf ¢ = 0

v = 0.48 | ~ y = 100 pef

C = 1000 psf R =1.0
K

With ¢ = 0, the Drucker-Prager yield function reduces to a von Mises

function.

Only Young's‘modulus is_variéd here. Two values of the
ratio E/C are considered, namely 1006 and 100. ‘This,ratio in real
soils is expectéd to range from apbroximately 100 to 3000 with perhaés.
1000 being a t&pical value (14). In the following we consider first
the case of a-soil with a Young's modulus‘of 1x10° psf and present a
fairly detailed description of the séil fgsponse to the footing 1oad.
Only limitéd dat; is présented 1ater'f6r the case of a soil with a

Young's modulus of 1x10° psf. .
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Case 1 - E = 1x10° psf

Load displacement curvesvpbtained from small and large
deformation analyses are shown ih Fig. 49 for a Young's modulus of
1x106_psf. The curves are almost-linear up to a load of 3600 psf.
After this point the curvés bend over quite sharply and gradually
approach the numerical limit 1oads.corresponding to small and large
deformation analyses., The two curves are seen to be essentially
identical. Thus for E/C = 1000, the smali deformation solution is
&alid for all 1oad>1evelé up.té and inclﬁding the limit load. The
exact limit load for this pfobleﬁ‘is 5140 psf an& ;he numerical

- limit load is 10 percent above this value.

Stress distributions for various load levels ére.shown in
Figs. 50 through 52. At 800 psf the soil stratuﬁ was essentiall?
elastic. Considerable yielding had occurred at q = 3060 psf, and
q = 5520 psf corresponds to the numérical limit load. There is a
marked similarity in these curves and those obtained for a C-¢ soil
(Figs. 39 thréugh 415. It is of interest to note that.the maximum
contact shearing stress at the limit load is equal to the.cohesive'

strength (1000 psf).

Zones of yielding for var&ous load 1evels.are shown in Fig,
53.. Again yielding starts at the corner of the footing and spreads
downward and toward the footing centerline. At a load bf about 3610
psf the yield zone Has just reached the footing centerline. At this
_point thé footing and an adjacent elastic wedge (which makes a 45

degree angle with the base) are separated by a band of yielded matérial
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from the remaindef of the still elastic stratum. The spread of the
yield zone to the centerline is coincident.with‘the sharp break in
the 1§ad displacement.curve (Fig.>49). This kind of behavior is
similar to that noted for the notched tensile specimen (Chap. 5).
At the numerical limit load all of the soil directly beneath the
footing has yielded. - At the limit loéd the zone of yielding in the
present case (p = 0) is considerably smaller than that of C-¢ soilé

(Figs. 44 and 45).

The corresponding velocity field at the'numerical limit load
is shown in Fig. 54 along with the outline of fhe Prandtl velocity
field. The velbcity field is denoted by the small arrows; The close
agreement between the two fields is evident. Outside of the Prandtl
field the velocity magnitudes‘are too small to appear in the figure.

In Fig. 55 we show the velocity field‘at the limit load for a smooth
‘footing bearing on the same material. . The outline of the Hill velocity
‘field (55) is also superimposed on the figuré. .Although the numerical
velocity field is similar to fhe Hill field, it can not be said to be
»identical to the Hill field, Thé numerical field, in fact, appears

to be a combination of the Hill and Prandtl fields. Pragér and Hodge
(55) have previously suggésted a combination of the Hill and Prandtl

fields as a possible failure mode.

'Case 2 - E = lxiO5 psf

Load displécement curves for the case of a clay with a
Young's modulus of 1x10° psf are shown in Fig. 56. The shape of

the small deformation curve must, of course, be identical to that for
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a Young's modulus of 1x10° psf. The ratio, E/C, is 100 here énd we
.see from the figure that the small and large deformation analyses
produce somewhat different resuits. The large deformation curve étops
at é load of approximately 5600 psf. Although the analysis was
:coﬁtinued beyond this @oint, the response became somewhat‘erratic.

A very curious velocity field was observed at 5600 psf and is_shown
in Fig. 57. A wedge beneath the footing is moving downﬁard with the
footing, and the soil adjacent to the wedge is béing squeezed up and
to the right. Beyond this is a region resembling a radial sheaf_zbne;

and finally there is a rigid zone moving up and to the right.

In an attempt to obtain an improved solution, the problem
was recomputed using half of the original increment size. :The revised
.solution lay slightly above tﬁe §riéinal solution and a maximum load

of about 5800 psf was ébtained. At this point a solution for thé linear
equations could not be obtained. The problem was alsovsolved using

a reduced Poisson's ratiovof 0.4 and again the.solutioﬁ behaved irre-
gularly at about 5800 psf. Thus in ﬁhe conte#t_of the fihite element
mesh and numerical integration scheme used here, the maximum féoting
load is 5800 psf. It may be the case that thé velocity field.sh§wn in
Fig..57 corresponds to the actual failure mode for a clay with E/C =

100.

6.5. Some Comments on the Numeriéal Solutions

. In this section we discuss the adequacy of the inqrement.
size'used_in the vafious solutions, the accuracyA§f~the soiutibns with
respect fo‘satisfactiOn of the diécrete equi1ibrium equations, and
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finally element stresses are discussed.

Increment Size

When an incfemental integration scheme is utilized, there
is always a question as to the adeqﬁacy'of the increment size. Re-
ferring to Figs. 35, 36 and 37, it can be seen that about twice as
many increments were used for a ffiction angle of 10 degrees as were
used for friction angles of 20 and 50 degrées. In particular, 48
increments were‘used for @ =-10°. This problém was originally solvéd
using about half as many inérements, however, near the small‘deforma—
. tion limit load, the large deformation solution behaved somewhat
erratically. For this reason both the large and small deformétion'
curves were recomputed using a smaller increﬁent size. The small
deformation curves were virtually the‘same for both increment sizes
with the smaller increment size giving a 1 percent reduction in the
numerical limit load. fhe large deformaﬁion curves were the same
except neér the limit load where tHe smaller incremént gave a smoothér

response.

Aé further evidence of the_adeqdacy of the increment sizes
used, the small deformation.solution for o = 20° (Fig. 36y, the large
deformation solution for @ = 30° (Fig. 37), and the small deformation
undrained solution (Fig. 49) were all réconputed using half the ori-‘
ginal.increment'size. Although in all three cases the smaller incre-
" ment size produced a smoother load displacement cur?e,.damping.the
oscillations mentioned previously, the two solutions were essenfially

the same. We can thus conclude that any error in the solutions can -

-97-



be ascribed to the finite element discretization rather than to the

integration scheme.

Accuracy of the Solutions

In each increment two sets of linear simultaneous equations
must be solved. As the footing load approaches the limit.load we can
expect these siﬁultaneous equafions to become somewhat illposed since
at the limit load of the discretized Body the tangent stiffness is
singular. We thus need some measure of the accuracy of'fhe linear

equation solutions and herein two checks were used.

At the end of each increment the incremental displacements
are substituted back into the mid-increment equations and a residual

vector, R, is computed as follows,
{&} = (k] {v} - {p} ' o (128)

Of course, for an exact solution the residual vector is identically
zero. TFor all the solutions presented here and for each increment
of those solutions, every residual vector component was less than

.005 1b.

After the 1ast.increment of.every solutio@ overall equiiibrium
of the soil stratum wés checked, that is, all of the extérﬁal far ces
(indluding constraint fqrces) were summed.. For all of the solutioﬁs
- presented here both the vertical and horizontal components of.this

sum were less than .002 1b.
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Element Stresses

As discussed previously, stresses in constant strain triangles

often exhibit sharp jumps between adjacent elements. This tendency

appears to be even more pronounced in elastic-plastic solutions than
in elastic solutions. Stress jumps were found to be greatest in the
undrained analysis where element stresses oscillated between tension

and compression near the footing corner at the higher loads. It

‘should be noted however the nodal stresses were reasonably smooth

at all load levels.
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7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

We have discussed here two elastic—plastic soil models; the
"perfectly plastic Drucker-Prager model and the isotropic strainj
hardening model of Roscoe and Burland. An explicit incremental con-
stitutive matrix was preseﬁted for the Druckef—Prager model and an
ind;cial expression for the Roscoe-Burland congtitutive tensor
(suitable for numerical aﬁalysis) was presentéd. We have also
presented a "mixed" incfemental formulation of the largg deformation
_problem. It was found that in order to render the assqciated finite
‘element. equations symmetric,‘it was necéssary to assume incremental
strains to be an order of magnitude smaller than incremental rotations.
In Chap. 4 we reviewed_intégration techniques suitable for elastic-

plastic analysis and discussed the mid-point integration rule.

‘A number of example.problems.were conéidered in Chap..S,
‘including a shallow layer of undfaiﬁéd clay under uniform sﬁrip
.loading and a notched tensile spécimen. Finallj in Chap. 6 totali
streés and effective.stress solutions for 50 ft. deep elastic-plastic
. clay strata loaded by a rigid strip fqoting were présented, with
particular attention given to the affect of large deformations oﬁ

the solutions. -

7.2 Conclusions

Numerical Techniques

It was shown in Chap. 5 that for a given set of nodal points,
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‘the elastic~-plastic solution isisignificantly influenced by the element
arrangement. Of theAthree arrangements considered, the division of
quadrilaterals into four triangles géve, as expected, the best results.
These conclusions are, of course, meanipgful onl& fof the constant

strain triangles used here.

It appears that a fairly fine finite element mesh is needéd
to capture limit loads. However the finite element @ethod is clearly
capable of prgdicting limit loads té within sﬁall tolerances as evi-
denced by the solutions for the shallow clay layer and thg notched
.tensilé specimén. In the context qf the Drucker-Pragef model, it
‘seems that the higher the friction angle, the finer the mesh must be
in.order to determiﬂe limit loads to wifhin a specified errér.. It
was also demonstrated in Chap; 6 that mésh 3 (Fig. 29) is fine_ehough

to capture the elastic solution for the 50 ft. stratum.

The numerical intégration scheme utilized here was shown,
in Chapé. 5 and 6, to be rélatively insensitive to increment size.
‘It was further indicated iﬁ Chap. 6‘£hat the increment sizes used fér
the 50 ft. stratum examples were adequate. It was demonstrated in
Chap; 5 that in the context of lérge displacement analysis, the
equilibrium correction_technique is a powérful numerical tocol. 1In
addition it was demohstrated that stress scaling with‘equilibrium
correction is an.efficient numerical teéhnique in elastic~-plastic

analysis.

Large Deformation vs. Small Deformation Analyéis

For realistic values of effective stress parameters for
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overconsolidated clay, changes in geometry caused by deformation of
the soil is such as.to affect the load-displacement response only
near the limit load. For reasonable values of undrainedvclay para-
meters (E/C = 1000), soil deformation has practically no effect on
fhe ioad-displacement response of a footing,even near the limit load.
In such a case, small deformation anaiysis neglecting the changés in
geometry is sufficient for an elastic—plastic'analysis. For the
_extfeme value of E/C = 100, clay response is éffected_near>the limit
’loadf For reasonable values of both drained overconsolidated‘para-
meters and undrained parameteré, fhe small aisplacement limif load is
.a meaningful measure of the load at which footing displacements

become excessive.

Clearly for practical settlement calculaﬁions a small defor-
mation analysis is sufficient for the total and effective stress
parameters considered here. Depending on the precision required, a
1ineér analysis may, in fact, be Suitable for practical settlement
analysis.. This is particularly true for undrained aﬁalysis whefe av

significant portion of the load settlement curve is nearly linear,

Deformation Modes at the Limit State

For some time there has been é'questidn as to the true
velocity field at incipient collapsé of plastic limit state for a
smooth punch bea;iﬁg on a perfectly plastic, weightless von Mises
or Tresca material (plane strain). The results presentedlhere
indicate that the actual field is a combinatién of‘both the Hill

and Prandtl velocity fields, a possibility suggested by Prager and
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Hodge (55). Tor a smooth punch bearing on an extended von Mises
(Drucker-Prager) weightless material, it was determined here that the
actual failure mode contains elements of both the Prandtl and Hill

velocity fields.

For both the von Mises and extended wvon Mises yield functions,
we have demonstrated that the Prandtl velocity field corresponds to
the actual mode of failure for a perfectly rough punch bearing on a

weightless material.

7.3 Recommendations for Future Work

It is recommended‘that the analyses presented here be extended
to subsurface footings. Furthermore, the.effective stress analyseé
of normally consolidated clay strata and the analysés of sand strata
constitute a natural extension of the work presented here. 'Althﬁugh
the Drucker-Prager model with k = 0 is directly applicable‘to these |
soils, some preliminary analyges by the author yielded Qery poor
results. It may well be that finer finite element meshes and a

different numerical integration scheme are required for such materials.

Although some analyses using Cambridge type strain hardening
models (64) have been briefly repdrted in the literature (71)(82)(83),.
it is felt that more extensive studies using these models could be-

extremely interesting.

Since strain softening is characteristic of many natural
soils, analyses using strain softening stress-strain models would be
"extremely enlightening. 1In particular the effect of strain softening
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on the maximum load should be investigated. TIhis kind of work is
particularly necessary for sensitive clays which exhibit dramatic
softening. Hoeg (34) and Zienkiewicz and Nayak (8l) have done some

preliminary work in this area.
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Table 1

q:

Elastic Contact Stresses Beneath Rough'Rigid Footing

10,000 psf, v =
Distance o  (psf) o  (psf)
X y
from
Centerline Halfspace Finite Halfspace Finite
ft. (Exact) ‘Element (Exact) Element
0 2,850 2,820 6, 640 6,330
.5 2,900 2,910 6,780 6,520
1.0 3,100 3,140 7,230 6,980
1.4 3,410 3,510 7,960 7,710
1.8 - 4,040 4,120 9,430 9,000
2.1 5,110 5,220 11,930 11,200
2.3 6,950 6,220 16,210 14,650
2.5 - 13,380 - 18,660
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Table 2 Elastic Stress Distribution Below Centerline of Rough Rigid

Footing, q = 10,000 psf, v = .3

Distance g (pst) o (psf)
Below . X y
Footing Halfspace Finite Halfspace Finite
ft. (Exact) Element (Exact) Element
0 2850 2820 6640 6330
1.03 3040 2630 6400 6360
2.50 1640 1380 6130 6030
3.90 * 795 491 5380- 5260
5.60 362 140 4440 4400
7.80 . 158 -36 3510 3490-
10.70 67 :-102 2710 2630
14.8 27 —68‘ 2030 2060
20.8 10 —Si 1480 1520
29.2 4 30 1070 1130
37.4 2 111 837 925
50.0 1 276 629 - 825
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Table 3 FElastic Stress Distribution Below Corner of Rough Rigid

Footing, q = 10,000 psf, v

3

Distance o (psf) Oy (pst)

Below : .
Footing Halfspace Finite Halfspace Finite
ft. (Exact) Element (Exact) Element
0 ——- 13,380 ——- 18,660
.2 7480 6770 17,180 ‘17,350'
A 4730 4250 12,340 12,650
7 3310 - 2940 9,460 9,470
1.1 2570 2200 | 7,650 7,750
1.5 2100 1770 6,640 - 6,610
2.0 1760 1440 5,840 5,790
2.7 1430 1120 5,160 5,110
3.6 1100 816 4,570 4,520
4.7 787 521 4,050 3,990
6.2 505 286 3,520 3,480
8.1 304 92 3,020 2,960
11.0 152 -8 2,450 2,420
15.0 69 -37 1,910 1,950
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Table 4 Elastic Contact Stresses Beneath Rough Rigid Footing

q = 10,000 pst

Distance o (psf) o (psf)
X y
From .

Centerline| Halfspace| Halfspace| Finite | Halfspace| Halfspace| Finite
ft. (Exact) (Exact) Element (Exact) (Exact) |Element
v = .5 v = .48 v = .48 v=.5 v = .48 |y = ,48
0 6,370 5,880 5,580 6,370 6,370 - 6,280
.5 6,500 6,000 5,840 6,500 6,500 6,600
1.0 6,950 6,420 6,370 6,950 6,950 7,040
1.4 7,680 7,100 7,030 7,680 7,690 7,740
1.8 _ 9,170 8,470 8,220 9,170 9,180 8,990
2.1 11,730 10,830 9,780 11,730 11,740 10,990
2.3 16,240 14,990 13,180 16,240 16,240. - 14,700
2.5 -—— —— 14,720 -— —— 21,670
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- Table 5 Elastic Stress Distribution Beneath Corner of Rough Rigid

Footing, q = 10,000 psf

|Distance o (psf) o (psf)
Below X y v
Footing Halfspace | Halfspace | Finite Halfspace| Halfspace| Finite
ft. (Exact) (Exact) Element (Exact) (Exact) |Element
v = .5 v = .48 v= 48| v=.5 v = 48 v o= .48
0 - - 14,720 -— - 21,670
.2 5,950 6,130 6,260 | 17,000 17,220 >18,650
4 4,400 4,430 4,610 12,110 | 12,240 | 13,170
.7 3,510 3,480 | 3,420 | . 9,260 9,340 9,570
1.1 | 2,930 2,870 2,870 7,520 - 7,570 | 7,810
1.5 2,560 | 2,490 2,420 6,570 6,590 6,670
2.0 2,200 2,140 2,030 5,830 5,840- 5,860
2.7 1,800 | 1,750 1,660 5,210 5,210 5,190
3.6 1,370 1,330 1,280 | 4,670 | 4,660 4,630
4.7 960 937 894 4,180 4,170 | 4,110
6.2 600 587 576 3, 660 3, 640 3,580
8.1 351 345 384 | 3,140 3,120 | 3,070
11.0 171 168 266 2,530 2,520 | 2,500
15.0 76 75 219 1,960 1,960 1,990
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- APPENDIX I - DERIVATION OF THE ¥ MATRIX

As a demonstration of how the Y matrix can be derived,

we show that to the first order,

AS = AT - 0., e + g

11 - 11 11 11 11 &2 " 20 (Al.1)

12 €12

We begin by considering yet another description of the stress staté
in the subsequent configuration. Referfing to Fig. 13 wé cons ider

an infinitesimal element which in the initiai configuration is square
and whose sides ére parallel to the global coordinate system. In

the subsequent configuration, fhe square has béenvrotated w.radians
(to the first order) and has been deformed into é parallelogram (Fig.

. 58) where fo the first order,
N=-e, S o (A1.2)

Associated with the deformed element is a set of locally
convected base vectors labeled 1 and 2 in Fig. 58. Stress components
?ij are referred to this locally convected system and define force.

per unit of area in the subsequent configuration. Reducing NoVozhilov‘s

(49) three-dimensional equations to the plane strain case, we have,

L+ 2 epy\1/2 _

S11 % <1 y2e./ 11 (a1.3)
11 , ~
' : 1+2e,\1/2 _ :
; Sy2 = (1 ¥ 2 e > T22 I (AL.4)
22
812 = Tio ‘ ‘ (A1.5)

Referriﬁg to Figs. 14 and 58, we note the following transformation
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. 2 T :
= Ty cos N+ Typ Sin 7 Ty sin2M (41.6)
11 cos®T -~ sin®1 )

Taking a Taylor expansion in T about zero and retaining dhly linear

terms, Eq. Al.6 reduces to -

11 T T11 - 2 T12 il (A1.7)
Substituting Eq. Al.7 into Eq. Al.3 we have
142 622\1/2
511 = <1 vz, ) =21, M , (AL.8)
11 , A :
A linear Taylor expénsion of Eq. Al.8 with respect to €11 and €59 '
yields |
S = ey ey (T =27, M : (AL.9)
or, for a first order approximation,
S11 = (1 + €yy - ell) (Tll -2 T12 m (Al.}O)

Substituting Eqs. 71 and 76 into Eq. Al.10 we have,
B8y H oy = L+ ey, - e;) (At + o,y = 2 [AT, + 0p,] ?12)(A1.11)

Finally, eliminating terms which are nonlinear with respect to the

incremental variables, we have .

AS = AT - 011 e11'+ 011 e22 - 2

1 11 (A1.12)

912 12
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APPENDIX IT - CONSTANT STRAIN TRTANGLE MATRICES

We refer the reader to Ref. 79 for a detailed discussion of
the constant strain triangle.  Referring to Fig. 59, we write a linear

displacement expansion over the element,

{z;} = ] {v) - (42.1)

" where uy and u, are the X and Y displacements respectively at a generic

‘point in the element, and {v} is a vector of element nodal displace-~
ments,

u

11
21

22
13
23

fv} = 12 o O (a2.2)

u

u

where, for example, u is the X displacement component of node 3. Also,

13
: L. 0 4. 0 4. 0
] = 1 2 3 (A2.3)
, 0o 2 0 L. 0 4

where &l’ &z.and &3 are the so-called area coordinates of the triangle

- (79), that is,

4= (a + bl_X'+ c, Y)/2A (a2.4)
1, = (ay + by X + ¢, Y)/24 : ~ (A2.5)
Ly = (ag + by X + ¢, V)/24 : S @26
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and

In addition, the area of the

Fipally, we define

(8] = g%

1 2
0] 1 0 c,
¢ by ey by
b, 0 b
0 .Cl 0
1 by €2
~e, /2 b /2 -¢2/2

. =175-

matrices [B] and [B],

triangle is denoted by A.

.
3
by
by 0
. _
v €q
3 by
-c /2 b /2
c3/ 3/

(A2.7)
(A2.8)
(A2.9)

(A2.10)

(Az.il)

(A2.12)

(A2.
(A2.

(A2,

13)
14)

15)

(A2.16)

(A2.17)



APPENDIX TIII - THE COMPUTER PROGRAM

All of the solutions presented here were generated by a
FORTRAN IV computer program designed and coded by the author. The
program was compiled and executed on Lehigh University's CDC 6400

computer, SCOPE 3.4, using the FTN compiler.

The program is capable of solving, numerically, elastic-
perfectly plastic, large deformation boundary value problems (plane
~strain). In particular the program incorporates_the Drucker-Prager
model which contains the von Mises model as a special case. It can,
of course, also solve linear elastic, elastic large deformation and
elasfichlastic small deformation problems. The current version of
the program was designgd specifically.to haﬁdle boundary conditions
peculiar to puﬁch problems where forces or displacements can be pre-
scribed beneath the punch. Simple modifications must be made in order

to treat more general boundary conditions and load conditions.

.Tﬁe input consists essentially of ﬁesh data; increment data
and»material préperty data; All mesh data must be read in since the
program contains no algorithms for automatic mesh generation. The
nﬁmﬁer‘of increments énd the size of each increment (force or displace-
ment) must.also be read in since the program does not ha&e the capa-

bility of making decisions concerning increment size.

‘The output at the end of each increment consists of:
1) total nodal displacements,

2) _incrementél nodal displacements,
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3) residual vector,
4) total element stresses, and
5) the yield condition of each element.

At the end of every third increment nodal stresses are printed.

Element stiffness matrices and the global stiffness matrix
arevgenerated in a single pass through all of the elements. At any
one -time, element data and a partial global stiffness matrix corres-
ponding to 25 quadrilatéral elements (100 triangular elements) are
stored in ceﬁtral memory. Thus, reading and writing of scratch tapes
are required, but the program can be compiled'in 70,000 octal words

(28,672 decimal).

Only the lower banded hélf_of the symmetric global stiffness
matrix>is generated and stored. In the linear equation solution |
subroutine,-thié entire matrix is contained in core. Thus although‘
there is no limit on the ndmber of elements that can be handléd, the
banded half stiffness métrix ﬁust‘contain less than 15,000 élements
: (deciﬁal). Fér example, if a mesh contained 250 nodes, the half

band width must be less than 15 nodes.

For mesh 3 (Fig. 29) with quadrilaterals defined by four.
constant stfain triangles, the nonlinear solutions requiréd about 13
seconds of'centfal.processing‘time per increment and 12 seconds of
peripheral proéessing time per increment; Thus a typica1>non1inear
analysis whigh required, say, 30‘inCrements would c&st about 60
dollars and take about 400 and 360 secénds of CP an&'PP time respec-
itively. | | |
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- APPENDIX IV - NOTATIONS

al,bl,cl; = defined by Eqs. A2.7 -A2.15

aZ’bZ’CZ’
a3,b3,c3
A = area of triangle
ral = initial stress matrix
B = defined by Eq. 20
[Bj = matrix relating element strain to element nodal displécements

(81

It

matrix relating element strain and rotation to nodal dis-

placements

C = céhesive strength

(] = elastic~plastic constitutive matrix

e, = void ratio

eij = infinitesimal strain tensor

{e} = §train vector:

e} = augmented strain vector
" E = Youﬁg's modulus

£ = yield function

Fi = body fdrcg vector

G o = shear modulus

H = defined Eq. 58

H,H,, " = defined by Eq; 26

H3,H4

J2. = second invariant of the deviatoric stress tensor

k - = material constant of Drucker—Praéér yield function
Ikl - = element tangent Stiffness in Chap. 3; global tangent
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[KG]
[Km]

&1,&2,&3

[n]

u,

L
u11’921’
Y1272

“13°"23

stiffness in Chap. 4

element geometric stiffness

il

element material stiffness

length used in example problem shown in Fig. 19

i

area coordinates of a triangle .

I

length of cantilever beam in Chap. 5; defined by Eq. 55

in Chap. 2

material constant of modified Cam-clay

coordinate function matrix associated with constant

strain triangle

hydrostatic stress component

strain hardening parameter.

= element load vector in Chap. 3; global load vector in

Chap. 4

average vertical stress beneath footing

= average vertical stress beneath footing at limit state
= defined by Eq. 56

= residual vector

= surface area

= deviatorié'stress tensor

= Kirchﬁoff stress tensor

= time like parameter

~ = traction vector

= incremental displacement vector

= nodal displacements of a generic finite element -
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fu} .

{v}

N
1]

two-dimensional incremental displacement vector
vector of element nodal displacements
diSplaceﬁent vector of discrétized body
cartesian coordinates

global coordinates

‘material constant of Drucker-Prager yield function

instantaneous elastic shear modulus associated with

modified Cam~clay

weight density

engineering shearing strain

denotes a virtual quantity

Kronecker delta

maximum mobiliéed'friction aﬁgle beneath fboting
end.displacemént of cantilever beam "

Green's strain tensor

material constant of modified Cam-clay in Chap. 2 and

an angle in Appendik I

-

constant relating’plastic strain vector and normal to

-yield surface

material constant of modified Cam-clay
Ppisson's ratio

cartesian coordinates

mass denéity

appligd'stress

yield stress is simple tension -

Cartesian stress tensor
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01505504
T, .
1]

ij

principal stresses

locally rotated stress tensor

" stress tensor associlated with convected coordinates

_soil friction angle

defined by Eqs. 60 and 61

matrix relating Kirchhoff stress tensor and Ti

_ ]
infinitesimal rotation tensor
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