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ABSTRACT

An analyti.cal study of the static response of a homogeneous

clay stratum to footing loads is presented in this dissertation.

Clay is modeled as a linear elastic-perfectly plastic' material with

the Drucker-Prager yield condition and associated flow rule. The

effect of large deformations on the response of the clay is included

in the analysis. Both drained and undrained analyses are considered.

In particular a single, strip surface footing bearing on

a finite stratum of clay is considered. The footing is assumed

to be rigid and the interface between the footing and soil may be

either smooth or rough. The base of the soil stratum is rigid and

perfectly rough. A plane strain condition is assumed.

Numerical techniques are utilized to solve this elastic- ­

plastic, large deformation boundary value problem. The finite element

method is used for spatial discretization, while an incremental

integration scheme, referred to as the mid-point rule, is used to

develop the complete load-displacement-stress response. A FORTRAN

IV computer program was written to formulate and solve the governing

equations.

A 50 ft. deep clay stratum loaded by a 5 ft. wide footing

is treated in detail. Effective stress analyses for overconsolidated

clays are presented for three different friction angles (all other

material parameters are fixed). Total stress undrained analyses are

presented for two values -of Young's modulus, the other material
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parameters being fixed. Footing load-displacement curves are shown

for each problem considered, while stress distributions, zones of

yielding and velocity fields are presented for selected problems

only.

For reasonable values of both total and effective stress

parameters, the results of small and large deformation analyses

are found to differ only near the limit load. It was also determined

that for a rough punch bearing on a von Mises or an extended von Mises

(Drucker-Prager) material, the mode of failure corresponds to the

so-called Prandtl velocity field. For a smooth punch bearing on either

a von Mises or extended von Mises material, the failure mechanism

does not exactly correspond to either a Hill or Prandtl type velocity

field.
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1 . INTRODUCTION

1.1 The Physicql Problem

The primary purpose of this dissertation is to present an

analytical study of the static response of a homogeneous clay stratum

to footing loads. Clay is modeled as a linear elastic-perfectly plas­

tic material with the Drucker-Prager yield condition (22) and associa­

ted flow rule. The effect of large deformations on the response of

the soil is included in the analysis. Both drained and undrained

analyses are considered.

In particular we consider here a single, strip, surface

footing bearing on a finite stratum of clay (loaded normally and

centrally). The footing is assumed to be rigid and the interface

between the footing and soil may be either smooth or rough. The base

of the soil stratum is rigid and perfectly rough. A plane strain

condition is assumed.

Footing width and stratum depth are two of the many para­

meters which affect this problem. However here we chose a single set

of geometric parameters while allowing the material parameters of the

soil to vary. As can be seen in Fig. 1, the foo~ing is 5 ft. wide

and the soil stratum is 50 ft. deep. In addition to this. particular

problem which is treated in Chap. 6, we also consider in Chap. 5 a

shallow layer of undrained clay as well as some additional solid

mechanics problems, e.g., a notched elastic-plastic tensile specimen

and an elastic cantilever beam suffering large displacements. Also

in Chap. 5 we examine, by means of numerical experiment, some of the
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variables associated with the numerical solution techniques used here.

Numerical techniques are utilized to obtain the solutions

presented herein. The finite element method (79) is used for spatial

discretization while an incremental integration scheme, referred to

as the mid-point rule, is used to develop the complete load-displace­

ment-stress response. Constant strain triangles are used exclusively.

A FORTRAN IV computer program was written to formulate and solve the

governing equations. A brief description of this program is presented

in Appendix III.

The principal physical problem considered here is clearly

highly idealized. Clay is not strictly an elastic-plastic material

nor are most soil strata homogeneous, and, in fact, most footings

are submerged below the soil surface. Idealized problems are solved

in order to gain insight, qualitative information and sometimes

quantitative information with regard to real physical problems. The

aim here is not to solve a particular problem but to look at a class

of problems and to observe, through analysis'. the behavior of the

footing-soil system. The introduction of additional parameters aS30­

ciated with layered soil profiles, subsurface footings and more complex

soil models would confuse rather than enlighten.

l.2Previous Work

In the past few years a number of investigators have con­

sidered horizontal nonlinear clay strata subjected to vertical loads

such as those transmitted by a footing. Some have treated soil as a
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nonlinear elastic material while others have utilized elastic-plastic

models. We consider first the nonlinear elastic investigations fol­

lowed by elastic-plastic investigations.

Girijavallabhan and Reese (30) considered a circular footing

bearing on an undrained clay where. an isotropic nonlinear elastic

model was used for the clay. Poisson's ratio was assumed to be constant

and the secant value of the shear modulus was assumed to be uniquely

related to the octahedral shearing strain. An iterative approach was

used to solve the equilibrium equations, and the finite element method

was used to discretize the soil stratum. A model footing test was

analyzed, and analysis and experiment were shown to agree reasonably

well.

Desai and Reese (16) also used an elastic model and the

finite element method to treat circular footings bearing on an un­

drained clay. An incremental approach was used to integrate the equa­

tions. It was assumed that in each increment the instantaneous stiff­

ness of the clay could be described by a constant Poisson's ratio

and a tangent value of Young's modulus. The incremental material

parameters were obtained directly from undrained triaxial tests.

Model footing tests for a single soil layer and two soil layers were

analyzed. Experiment and analysis were shown to agree well.

Desai (15) used spline functions to numerically approximate

undrained triaxial stress-strain data. An incremental integration

scheme was utilized and incremental elastic parameters were determined

directly from the spline functions. The finite element method was
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used to analyze model circular footing tests, with good results. Some

comparisons were also made between footing load displacement curves

obtained from splin~ approximations and hyperbolic approximations for

undrained triaxial stress-strain curves.

Duncan and Chang (23) used a hyperbolic representation for

undrained triaxial stress strain curves. The finite element method

and an incremental integration scheme were used to analyze circular

footings bearing on undrained clay.

Hoeg, Christian and Whitman (35) used a finite difference

technique to analyze a shallow layer of undrained clay subjected to

a strip load. The clay was modeled as an elastic-perfectly plastic

material with a Tresca yield criterion. The numerically determined

limit load and the exact limit load were shown to be identical.

Tang and Hoeg (71) utilized a linear elastic-plastic strain

hardening model developed by Christian (13) to treat strip footings

bearing on frictional materials (e.g., normally consolidated clay) •.

The soil model is similar to the strain hardening models proposed by

Drucker et al (21) and Roscoe et al (61). A finite difference tech­

nique and an incremental integration scheme were used to solve the

problem. The results were somewhat unsatisfactory with the load­

displacement curve having a zig-zag character. Some dynamic problems

were also considered with better results.

Fernandez and Christian (26) treated a strip footing bearing

on undrained clay and both material and geometric nonlinearities were

-6-



included in the formulation. A hyperbolic nonlinear elastic model

and an elastic-plastic Tresca model were used to describe the clay.

The finite element method and the mid-point integration rule were

utilized in the solution. The results were evidently very poor,

particularly for the elastic-plastic model. The load displacement

curves were very irregular and the numerical limit load was far

above the theoretical limit load. It is not clear if large deforma­

tions were included or excluded in the footing problem treated in

the report. However for the particular soil parameters utilized in

the example, the changing soil geometry should have little affect on

the results.

Hoeg (34) considered a circular footing bearing on a shallow

layer of undrained soft clay in which the clay was assumed to be a

linear elastic-linear strain softening material. An isotropic soften­

ing von Mises material model was utilized. The finite element method

and an incremental integration technique were used to solve the problem.

For a softening stiffness equal to about 20 percent of the elastic

stiffness, the maximum load was found to be reduced by 40 percent.

Finally Zienkiewicz et al (84) treat a uniform strip load

bearing on a soil obeying the Drucker-Prager yield condition and its

associated flow rule. A combined iterative-incremental integration

scheme in association with the finite element method was used to solve

the problem. For the particular set of material properties considered,

the iterative scheme failed to converge at a load which is approxi­

mately half of the theoretical limit load. No load displacement curve
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was presented but zones of yielding at various lo.ad levels were shown•.

1.3 Sign Convention for Stress

The typical continuum mechanics sign convention (tensile

stresses positive) and the usual soil mechanics sign convention

(compressive stresses positive) are shown in Fig. 1. In Chaps. 2

and 3 the continuum mechanics sign convention is utilized while the

stresses reported in Chap. 6 follow the soil mechanics convention.

1.4 Scope of the Investigation

We present here plane strain analyses of a rigid strip

footing bearing on elastic-perfectly plastic soil. Neither strain

hardening nor strain softening is considered. Complete load-displace­

ment histories are presented from zero load to failure, encompassing

initial elastic behavior, contained plastic flow and collapse. We

show also stress distributions and zones of yielding at various

load levels and show velocity fields at the collapse state. Particular

attention is given to the affect of the changing soil geometry on the

response of the soil stratum to the footing loads. The finite element

method and an incremental integration scheme are used to numerically

solve the governing equations.

A von Mises model is used for total stress analysis of

undrained clay while a Drucker-Prager model (extended von Mises) is

utilized for effective stress (drained) analysis of overconsolidated

clay. Some elastic-plastic analyses of undrained clay strata have

appeared in the literature, as indicated in Sec. 1.2 However, the
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more general case of a C~~ soil has been treated only briefly with

inconclusive results. We present here in-depth treatment of both

drained and undrained cases. In addition, a.successful formulation and

solution of the large deformation problem in soil mechanics is presented

here for the first time. We also show, for the first time, that the

well known Prandtl velocity field corresponds to the >true failure

mode for a rough punch bearing on an extended von Mises or von Mises

material.

This dissertation is organized as follows. In Chap. 2 we

discuss two elastic-plastic soil models--the Drucker-Prager perfectly

plastic model and a strain hardening model of Roscoe and Burland (59).

Incremental constitutive relationships are developed for both models.

Incremental equilibrium equations for the large deformation problem

are formulated in Chap. 3 and subsequently used to develop the instan­

taneous stiffness of a constant strain triangle. Incremental integra­

tion techniques are reviewed in Chap. 4. The mid-point rule and

various details of the integration scheme used here are also discussed.

Some example problems and numerical experiments are presented in

Chap. 5,and drained and undrained analyses of a 50 ft. deep clay stratum

are presented in Chap. 6. A summary and some conclusions are given

in Chap. 7.

-9-



2. ELASTIC-PLASTIC STRESS-STRAIN MODELS FOR SOIL

2.1 Introduction

Since we propose here to make an analytical study of the

response of soil to footing loads, we must necessarily select a mathe­

matical model for soil stress-strain behavior. The amount of valid

information that can be extracted from such a study is, of course,

dependent upon the degree to which the mathematical model approximates

real soil behavior. The complexity of soil stress-strain response might

be cause for severe pessimism in this regard. However, the mechanical

behavior of all materials is complex and must be drastically idealized

in order to make mathematical analysis tractable. For example, metal

behavior has been extensively investigated, yet in most analytical work

metal is idealized as being a perfectly plastic, isotropic hardening

or kinematic hardening material. In certain instances all three

idealizations can be shown to fall short of real metal behavior.

The proper idealization is, of course, problem dependent. For instance,

most engineers would feel justified in using an elastic model for

initial settlement analysis when the working load was far below the

maximum bearing capacity of the foundation.

Soil is less amenable to simple modeling than is metal.

Unlike metal, soil behavior is affected by hydrostatic pressure, and

the tensile and compressive behavior of soils differ. Here we treat

soil as a plastic material and assume that plasticity theory applies.

We discuss in this chapter two elastic-plastic soil models--an elastic­

perfectly plastic model and an elastic-plastic strain hardening model.

-10-



However, only the perfectly plastic model is used in the subsequent

computations. We view both models as useful computational tools not

as highly accurate predictors of detailed soil stress-strain behavior.

2.2 Typical Soil Stress-Strain Behavior

Some representative stress-strain curves for soil are shown

in Fig. 2. For the moment we think in terms of a strain-controlled

triaxial test, and except where noted stress means effective stress.

The stress-strain behavior of loose sand or remolded clay

is characterized by a highly nonlinear response curve which rises to

a maximum and remains there as· straining is continued. The behavior

of undisturbed ins~nsitive clay is characterized by an initial linear

portion and peak stress followed by softening to a residual stress.

Sensitive clay behaves similarly except that the difference between the

peak stress and the residual stress is substantial. Finally, undrained

total stress behavior of clay is characterized by an initial linear

portion and peak stress ~ith perhaps some strain softening.

In the most fundamental sense, soil is a plastic material

rather than an elastic material. For examp1e,c6nsidering Fig. 2a,

if we strain the soil to point A and then reverse the strain direction

such that complete unloading takes place, we find that we are left with

a residual strain, OB. A nonlinear elastic material would unload along

loading path OA, and it is in this sense that soil is plastic rather

than elastic.

-11-



It is of course not necessarily the case that soil stress­

strain behavior can be successfully modeled using the classical theory

of plasticity. It is in fact possible that nonlinear elastic models

may be more suitable for most loading histories. Duncan and Chang (23)

have used a nonlinear elastic model (with linear unloading) to success­

fully predict the response of a sand in the triaxial test when a

fairly complex stress'history was prescribed.

Here we choose to use elastic-plastic models to describe soil

stress-strain behavior. We discuss first the Drucker-Prager perfectly

plastic model followed by a Cambridge strain hardening model.

2.3 Drucker-Prager Perfectly Plastic Soil Model

The stress-strain curves shown in Figs. 2a, b, and d can

all be approximated to some degree by a linear elastic-perfectly

plastic model. It is unlikely however that a perfectly plastic

idealization would be a useful model for sensitive clays. The complete

description of an elastic-perfectly plastic model entails appropriate

elastic constants, a yield function and a flow rule.

There exist a number of failure criteria which reflect a

fundamental feature of soil behavior, that is, soil failure, unlike

metal yield, is in some way a function of the hydrostatic stress

component. The Mohr-Coulomb criterion (8) is certainly the best

known of these criteria. Shield (66) presented a pictorial represen­

tation of the Mohr-Coulomb criterion in three-dimensional principal

stress space and also discussed the criterion in the context of perfect
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plasticity and the associated flow rule. Drucker and Prager (22)

discussed an extension of the well known von Mises yield condition

which included the hydrostatic component of the stress tensor, and

subsequently Drucker (18) presented the so-called extended Tresca

yield condition.

The extended von Mises yield function, as viewed in three­

dimensional principal stress space, is shown in Fig. 3. The space

diagonal is a line defined by 01 = 02 = 03 where °1 , 02 and 03 are

the principal stresses. Any plane perpendicular to the space diagonal

is referred to as an octahedral plane. The extended von Mises

yield condition is a cone with the space diagonal as its axis. The·

extended Tresca criterion is a pyramid with a regular hexagonal base

and the space diagonal as its axes, while the Mohr-Coulomb criterion

is a pyramid with an irregular hexagonal base and the space diagonal

as its axis.

Bishop (8) has attempted to correlate all three criteria

with experimental data and has concluded that the Mohr-Coulomb cri­

terion best predicts soil failure. Roscoe, et al (62) contend that

the available experimental data (particularly triaxial extension

tests) are not sufficiently reliable to allow one of the criteria to

be favored over the others. They thus recommend the extended von Mises

criterion because of its simplicity. Furthermore, for the plane strain

case it can be shown that in the limit state (where elastic strains

are identically zero) both the extended von Mises and the extended

Tresca criteria reduce to a Mohr-Coulomb type expression (18,22).
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This implies that we can adjust ~he constants of the extended von Mises

and extended Tresca criteria such that all three criteria will give

identical limit loads. We note however that the three soil models

will giv~ different predictions for soil response below the limit

load. In the spirit of the Cambridge soil models (64) and with the

above discussion in mind, we utilize herein the Drucker-Prager con-

dition (extended von Mises).

Yield Function

Referring the components of stress and strain to any Carte-

sian coordinate system with axes x, y and z, the Drucker-Prager yield

criterion may be written as,

Q'p + J 1/2 = k
2 .

where p is the hydrostatic component of the stress tensor,

p = (CJ + CJ + CJ )/3x y z

and J
2

is the second invariant of the deviatoric stress tensor,

(1)

(2)

1
J = -6 [(CJ

x
- CJ

y
)2 + (CJ

x
- CJ)2 + (CJ - CJ )2] + ~ + ~ + ~ (3)2 z Y z xy xz . yz

where CJ CJ CJ CJ CJ, (J . are Cartesian stress components at a point
x' y' z' xy' xz yz

in the soil, and Q' and k are material constants. If Q' is zero,

Eq. 1 reduces to the von Mises yield condition. Referring again

to the principal stress space shown in Fig. 3, /3 k corresponds to

the radius of the cone at p = O. We will find later that Q' is related

to plastic volumetric strain.·
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In order that the Drucker-Prager and Mohr-Coulomb criteria

give identical limit loads, a and k must be defined as follows (22)

3 tamp (4)

(5)
3C

k - /(9 + 12 tan2 cp)

where C is the cohesion and cp is the friction angle of the soil.

Stress-Strain Relations

In order to determine the ela~tic-plastic, incremental

stress-strain relations, we start with the associated flow rule after

Drucker (17) and write, in indicial notation,

.p
= A .-£Le ..

~J ocr ..
~J

where f = + J
2
1/2 kap -

(6)

(7)

and e~. is the infinite.simal strain tensor with superscript p denoting
~J

plastic strain and the super dot denoting strain rate. The Cartesian

stress tensor is denoted by cr .. , and A is an arbitrary non-negative
. ~J

number which is greater than zero for plastic loading (f(cr .. ) = 0)
~J

and equal to zero for plastic unloading or if the stress state lies

within the yield surface (f (cr ..) < 0). In general if the current
. ~J

stress state is known and the stress rate tensor is prescribed, the

strain rate tensor is not uniquely determined since the plastic

strains can only be defined to within the indeterminate parameter A.

Conversely if the strain rate is prescribed, the stress rate is uni-

quely determined. Since a displacement formulation is to be utilized
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here, we wish to develop an expression relating stress rate as a

function of strain rate. Thus ~ will be determined as a function of

the strain rate tensor.

The elastic rate relationship between the stress and strain

is

0" ..
~J

E f-'e \) e l
= 1 + \) i e ij + 1 - 2\} ekk 5ij ..J (8)

where E is Young's modulus, \) is Poisson's ratio, 5 .. is the Kronecker
~J

e
delta, e .. is the elastic component of the strain tensor and we sum

~J

over repeated indicies. Noting that total strain rate, e .. , is the
. ~J

sum of elastic and plastic strain rates, we can relate stress rate to

total strain rate, as follows,

The stress-rate-strain rate equation is fully defined once ~ is known.

To determine ~ we note that during plastic loading, the stresses must.

lie on the yield surface, f(O" .. ) = 0, and
~J

df of O= 00" .. O"ij =
~J

(10)

that is, the stress rate vector must be tangent to the yield surface.

Equations 9 and 10 permit the determination of~. To compute

~ we start with some preliminaries as follows. From Eq. 7

of rv --2L + 1 J -1/2 oJ2
-- = " (11)00". . 00". . 2 2 00. .

~J ~J ~J
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where (12)

- s ...
~J

(13)

and s .. is the deviatoric stress tensor. Hence we can rewrite Eq. 11
~J

as

of 1 1 -1/2--::.-- = - CI O';J' + -2 J 2 s ..
00'. • 3.... ~J

~J

(14)

From Eq. 14 we can write

of-- = CI
OO'kk

(15)

We note from Eq. 15, that

e P = A~ = A CI
kk OO'kk

(16)

Thus for CI other than zero, plastic volume change is nonzero. Finally,

using Eqs. 9, 14 and 15 we can rewrite Eq. 10 as

AJ -1/2

22 s ij) + 1 _\) 2\) (~kk- A CI)O ij]}
(17)

3
x {I E r(~.;+ \) ,-. \ ~J

= fl 1 -1/21df 0 = "\-3 CI IL . + -2 J 2 s ..
'~J ~J.'

A CI o..q

This equation can be solved for A, and after some simplification we

obtain,

(18)
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where G is the elastic shear modulus,

(19)

and (20)

To obtain the desired stress rate-strain rate relationshi~, Eq. 18 is

substituted into Eq. 9 to give

<J •• =D .. e
~J ~Jpq pq

where

D. . = E [0 0 + \J 0 0 ]
~Jpq 1 + \J _ ip· jp 1 - 2\J ij pq

[ . -1/2 ]
BO .. + GJ2 · s .. [ -1/2

~ 1 ~ 1 GJ s +
. . G + aB 2 pq BO ]pq

(21)

(22)

The matrix D. . is referred to here as the elastic-plastic constitutive
~Jpq

matrix.

For the plane strain case (y = Yxz = e = 0) we can wr~.·te,. yz z

in matrix form,

<J
X

e
x

<Jy
= [D] e (23)

y

<J
Yxy

z

where the z axis is normal to the plane, Yxy is the so;"called engin­

eering shearing strain,

-18-



Yxy"" Ze
xy

and

I-v v 0

E
V I-v 0

[n] = (l-Zv)(l+v)
0 0 (l-Zv)/Z

v v 0

H 2 HlHZ Hl H
31

HZH I
H 2 HZH

31
2·

G + O!B H3Hl H
3
HZ

H 2
3

H4Hl H
4

H2 H4H
3

and
HI B+ GJ -1/2= s

Z x

H = B+ GJ -1/2 s2 2 Y

H
3

-1/2= GJ2 cr. xy

H - B+ GJ -1/2 s4 - 2 z

What we have done to this point is to develop a set of

incremental stress-strain equations for soil using an elastic-per-

fectly plastic model. To the extent that soil failure can be pre-

(Z4)

(25)

(26a)

. (26b)

(26c)

. (26d)

dieted with the conventional material parameters C and ~, this model

can capture soil failure (at least for plane strain). However this

drastic idealization can not capture some important characteristics

of soil behavior. For example, it has been often noted that the

amount of dilation at failure predicted by the perfectly plastic.

model is considerably in excess of that observed experimentally
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(19). According to Drucker (19) the failure surface for soil may

not be the limit of a sequence of yield surfaces as is normally

considered to be the case for metals. Accordingly. in the next

section we discuss a strain hardening model which for some loading

histories may more closely predict soil behavior than can a perfec­

tly plastic model.

2.4 An Elastic-Plastic Strain Hardening Model

A Brief Historical Account

Considering again Fig. 2a, we note that long before the

maximum stress has been reached some irreversible straining has

occured as evidenced by the fact that unloading from point A leaves

a residual strain. In the context of the theory of plasticity this

soil might be referred to as a strain hardening material since the

onset of plastic yielding is not synonymous with the maximum stress.

A few researchers have investigated the possibility of modeling soil

as a strain hardening material, and in particular this has been one

of the major thrusts of the soil mechanics group at Cambridge Univer­

sity for the past twenty years (58).

Apparently Drucker, Gibson and Henkel (21) were the first

to suggest that soil might be modeled as an elastic-plastic strain

hardening material. They proposed that successive yield functions

might resemble extended von Mises cones \vith convex end caps. As

the soil strain hardens both the cone and cap expand. Drucker (19)

again discussed this concept in a later paper in which he suggested

that the failure surface may not be a yield surface. This point is
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further emphasized by Drucker (20) who noted that successive loading

surfaces or yield surfaces do not approach the failure surface.

In 1958 Rosco~ Schofield and Wroth (63) published a paper

which contained the basis for a number of subsequent strain hardening

models for soil. The paper was concerned primarily with the behavior

of soil in the triaxial test and contained the so-called "state

boundary surface" (called a yield surface in the 1958 paper) postulate

and the "critical state line" postulate. These concepts were utili­

zed by Roscoe and Poorooshasb (60) to develop a stress-strain theory

for clay which was not, however, based upon the theory of plasticity.

Ca11adine (10) suggested an alternate interpretation of this theory

. using concepts from strain hardening plasticity. Subsequently Roscoe,

Schofield and Thurairajah (61) utilized the strain hardening theory of

plasticity to formulate a complete stress-strain model for normally

consolidated or lightly overconso1idated clay in the triaxial test.

This model has since become known as the Cam-clay model (64).

Burland (9) suggested a modified version of the Cam-clay

model and this model was subsequently extended to a general three~

dimensional stress state by Roscoe and Burland (59). It is the

modified Cam-clay model that we are concerned with here. We will

see later that for certain stress histories modified Cam-clay strain

softens rather than strain hardens.
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Modified Cam-Clay

Modified Cam-clay is an isotropic, nonlinear elastic-

plastic strain hardening material. Only volumetric strain is assumed

to partially recoverable, that is, elastic distortional strain

(shearing strain) is assumed to be identically zero. Elastic volu-

metric strain is nonlinearly dependent on hydrostatic stress and is

independent of deviatoric stresses.

In order to introduce the reader gradually to the idea of

soil as a plastic strain hardening material, we consider first the

response of soil to pure hydrostatic stress. Typical response for a

real soil is shown in Fig. 4, where void ratio is plotted versus the

natural logarithm of the negative of the hydrostatic stress (p is of

course negative here). If the current pressure, denoted by point A,

is the greatest the soil has experienced, then upon application of

increased pressure the soil will load along line AB. If the pressure

is then decreased, the soil will unload along curve BC and upon further

application of pressure will reload along curve CD. If we continue to

apply pressure, the response curve tends to approach asymptotically

line ABE (virgin isotropic consolidation line).

An idealized version of this response is pictured in Fig. 5.

The virgin isotropic consolidation line is assumed to be linear. The

rebound and reloading. curves are assumed to be identical and linea~ and

all rebound-reloading curves are parallel. Thus the equation for the

virgin isotropic consolidation line is

e =e - A Ln(- p)
v vI

-22-
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where e is soil void ratio, the natural logarithm (logarithm to the
v

base e) is denoted by Ln, and evl and ~ are material constants. A

generic rebound-reloading curve is defined by

(28)

where ~ is a material constant, and e 2 defines a particular rebound-v .

reloading curve.

Referring still to Fig. 5, consider an infinitesimal

increment of loading from A to B followed by unloading from B to c.

From Eq. 27, the void ratio change from A to B is

e
v

:= _ ~..E.

p
(29)

where p is the current hydrostatic stress and p is the increment of

hydrostatic stress (stress rate), and, from Eq. 28, the void ratio

recovered when unloading from B to C is

e := - ~ pip
v

(30)

Now

where

e
v

e ii := 1 + e
v

(31)

(32)

and in the context of the theory of plasticity, the recoverable or

elastic component of the volumetric strain is

e
e .. =
~~

~ p
(1 + e ) p

v

-23-
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while, from Eqs. 29 and 30, the plastic or irrecoverable component of

the volumetric strain is

since

e~. =
11

e~. =
11

(/I. - ]) p

(1 + e ) p
v

e
e .. - e ..

11 11

(34)

(35)

The State Boundary Surface and the Critical State Line

Although the Cambridge models were originally formulated

in order to describe the behavior of soil in the triaxial test, we

are Goncerned here with general states of stress and will hence use

general stress invariants rather than those peculiar to the triaxial

test. It is postulated that there exists a unique "state boundary

surface" in a three-dimensional space of hydrostatic stress p, J 2 ,

and void ratio e. A point in this space is referred to as a state
v

point, and the state boundary surface is said to delimit admissible

and inadmissible state points.

A portion of the state boundary surface is shown in Fig. 6.·

State points below the state boundary are admissible, while those

points above the surface are inadmissible. A continuous sequence

of state points is referred to as a state path. From the point of

view of the theory of plasticity, state paths which lie belm" the

state boundary surface are associated with elastic behavior, while

those which lie on the state boundary surface are associated with

strain hardening.

It is further postulated that there exists on the state
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boundary surface a "critical state line" where unlimited distortional

strain may occur with no corresponding change in the stress state or

the void ratio.

Consider now a soil specimen stressed uniformly (for example

in the triaxial test). We load the soil until failure and plot the

results in state space. Referring to Fig. 6, curve HIJK corresponds

to the state path of the soil. We assume that the initial state

point (denoted by point H) lies below the state boundary surface.

Thus the initial portion of the state path, HI, corresponds to elastic

behavior. At point I. the state path intersects the state boundary

surface and at point K failure occurs. State path IJK lies on the

state boundary surface arid is thus associated with strain hardening,

while point K lies on the critical state line.

As the soil strain hardens the stress state passes through

a sequence of yield surfaces until failure is reached at the critical

state line. These yield curves can be uniquely represented in p -'J
2

space. For example the initial yield curve is curve CIn on the state

boundary surface and is also denoted by curve CID in Fig. 7 where the

stress path is also shown. Curve EJF, shown in Figs. 6 and 7 corres­

ponds to a subsequent yield curve.

The reader should recall that we have assumed that elastic

distortional strain is identically zero and that elastic volumetric

strain is independent of deviatoric stresses. Thus if we apply a

deviatoric stress incr~ment to the soil sample in its initial state

(point H in Fig. 5), the void ratio remains unchanged and the state
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path corresponds to a ve~tical line. If we apply a hydrostatic stress

increment the state path must be defined by Eq. 28. We say then

that state path HI lies in a so-called vertical "elastic wall".

The elastic wall intersects the J
2

= 0 plane along a rebound-reloading

curve and intersects the state boundary surface along a yield curve.

Each yield curve is thus associated with a particular isotropic rebound-

reloading curve.

Modified Cam-Clay Yield Surface

A modified Cam-clay yield surface and the projection of the

critical state line in p - J
2

space are shown in Fig. 8. The yield

curve is elliptical and is defined by

(36)

where M is a material constant and Po is a strain hardening parameter.

The critical state line intersects the ellipse at its maximum point

and is defined by

J 1/2 =
2 - M P (37)

that is, the critical stress state is defined by an extended von Mises

type expression.

The stress-strain model will be completely defined once we

have specified the relationship between the strain hardening parameter

and the strains. Consider now an infinitesimal stress increment

denoted by line AB in Fig. 8. Point A lies on the current yield

curve while point B lies on the subsequent yield curve. Associated

-26-



with the·current yield curve is an elastic wall and an isotropic

rebound-reloading curve, and, of course, there is also an elastic

wall and a rebound-reloading curve associated with the subsequent

yield curve.

Referring to Figs. 6 and 7, the current value of the strain

hardening parameter is defined by the intersection of the current

isotropic rebound-reloading curve and the isotropic virgin consoli-

dation curve. Both the current and subsequent isotropic rebound-

reloading curves are shown in Fig. ~ along with the projection of

the incremental state path on to e - Ln(- p) space. If we now allow
v

the soil sample to unload, the unloading state path lies in an elastic

wall and its projection is denoted by BC in Fig. 9. Recalling Eq.

34 it is clear that we can relate the plastic volumetric strain and

the change in the strain hardening parameter as follows,

p =-e ..
~~

(/\ - '11) Po

(1 + e ) p
v 0

(38)

or
(39)

Behavior of Modified Cam-Clay in the Triaxial Test

We consider now a hypothetical drained triaxial test on

modified Cam-clay. The test sample is first subjected to an all

around confining pressure sufficient to cause plastic yielding.

Thus after applying the pressure the value of the strain hardening

parameter, p , is identical to the applied pressure. The pressure
o

is then reduced to some value denoted by Pl. The specimen is
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subsequently strained axially while the confining pressure is held

constant.

The stress path is denoted by line ABCD in Fig. 10. The

specimen yields at point B and strain hardening begins. At points B,

C and D we have superimposed on the stress space a plastic strain rate

vector. The horizontal.component of the strain rate vector corresponds

to volumetric strain while the vertical component corresponds to

distortional strain. We use the associated flow fule here and hence

the plastic strain rate vector is normal to the yield surface.

At point B the plastic component of the volumetric strain

is decreasing, and thus the load increases as we continue to strain

the body. We see from Eq. 39 that a decrease in the plastic volumetric

strain is associated with an expanding yield surface. As we continue

to strain the body further, the sample volume continues to decrease

so that strain hardening continues. However, as the critical state

line is approached the rate of the plastic volumetric strain decreases

until at the critical state the plastic volumetric strain is iden­

tically zero, as indicated by the vertical strain rate vector at

point D. Hence as we continue to strain the sample the vertical load

remains constant and we have thus reached the failure condition. If

we were to plot the axial stress versus axial strain, the curve would

resemble that shown in Fig. 2a.

We should emphasize that the functwnwhich defines failure

is not a yield curve nor is it the limit of a sequence of yield curves.

In addition, although the Drucker-Prager model and the modified
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Cam-clay model incorporate similar failure functions, the former

predicts dilation at failure vlhile the latter predicts zero dilation

at failure.

Although the modified Cam-clay model was developed in order

to predict the strain hardening behavior of clay, the model will in

fact predict strain softening for certain stress histories. We

consider now the same type of test as described previously in which

an initial hydrostatic stress(p ) is applied and subsequently reduced
o

to a value denoted by Pl. In this case PI is considerably less than

Po as indicated in Fig. 11.

Referring to Fig. 11, as the test specimen is strained axially

plastic yielding first occurs at point B. However here the plastic

volumetric strain is positive and the specimen begins to strain

soften with the axial load reducing. From Eq. 39 we see that an

increase in the plastic volumetric strain is associated with a contrac-

ting yield surface. The specimen continues to strain soften until

point C is reached where the plastic volumetric strain rate is iden-

tically zero. Continued axial straining produces no change in the

axial load.

The peak stress is no longer defined by an extended von

Mises expression but is rather dependent on the maximum past hydro-

static stress. It is the residual stress that is defined by the

extended von Mises expression. The test specimen dilates at the peak

stress whereas at the residual stress no dilation occurs.
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We might refer to the first specimen as lightly overconsolida-

ted and the second specimen as heavily overconso 1 idated. The lightly

overconsolidated specimen strain hardened when sheared while the heavily

overconsolidated specimen strain softened when sheared.

Incremental Stress-Strain Equations Suitable for Numerical Analysis

Although modified Cam-clay is suitable for predicting the re-

sponse of soil in the triaxial test, it is not suitable for general

stress analysis. Since the model is rigid-plastic with respect to

shearing deformation, the function we require in a displacement formula-

tion, stress as a function of strain, is singular. The possibility of

strain softening is. also a problem. Any numerical approach which re-

quires inversion of the tangent stiffness. may break down in the presence

of stra~n softening. In addition the solution of boundary value problems

involving strain softening materials is not yet well defined. In general

it can not be shown that such solutions are unique. We thus present a

variant of the modified Cam-clay model which is suitable for a tangent

stiffness formulation.

Considering first elastic response, from Eq. 33, we have

e
e .. = -
~~

1) .E.
1 + e p

v
(40)

If elastic distortional strain is identically zero, the elastic strain

rate-stress rate equation is

e
e =-
ij (41)

In order to invert Eq.41 we introduce some distortional flexibility

as follows, I" 1) + .l..l 1e I
6 ~ . (42)e .. - r 9 (1 (Jkk + - (j •.

~J + e ) p 313-J ~J 13 1J·v
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tvhere 13 is the instantaneous elastic shear modulus of the soil.

Equation 40 is still valid. Finally, Eq. 42 can be inverted to give,

~. . :: _rp(
1

+ e) + ~J ~kek o. . + ~
~J L. 11 . 3 ~J

e
e ..
~J

(43)

If tve desire to keep the computational model as close as possible to

modified Cam-clay, the shear modulus, 13, can be made quite large,

perhaps one hundred times the plastic bulk modulus.

In order to determine the elastic-plastic, incremental

stress-strain relations, tve again start with the associated flow rule

after Drucker and tvrite

(44)

(45)

(46)

We rewrite Eq. 43 as

(J. ,
~J

:: _,pel + ev ) ~J (. _ ~). (.
I 11 + 3 ekk A -:>. o. . + 13 e. .
~. 'I \ u0kk ~J ~J

(47)

The problem again is to determine A, and we note that during

plastic loading the stress state and the strain hardening parameter

change such that the ne,V' stress state lies on the subsequent yield

surface defined by the new value of the strain.hardening parameter.

At the beginning of the increment,
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f(O" .• ,p )
q 0

and at the end of the increment,

o (48)

f(O" .. + 0" .. ,p + po) = 0
1.J 1.J 0

Thus

of' of'
df = ---- 0" + --- P = 000".. ij op 0

1.J 0

Equations 47 and 50 permit the determination of A.

Now, from Eq. 45,

--.2L_l s ..
~ - 3 (2p - p ) 0.. + M1'uO" . • 0 1.J

1.J

(49)

(50)

(51)

and of
op = - p

o
(52)

Also, repeating Eq. 39

1 + e
v 'p

Po :0: - -"'....--.----=-11 Po e kk =
1 + e ~
----:-_~v A _u_f_

A - 11 Po OO"kk (53)

Utilizing Eqs. 51, 52 and 53 and substituting Eq. 47 into Eq. 50 gives

(54)

where,

and
R = _ P (1 + ev)

o A - 11
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Simplifying Eq. 54 and solving for A gives,

l's .. .
-# e .. + H ekk

A ~] (57);:;

2(:1J
2(2p - po) H+}i'±+ p (2p - po) R

where (58)

Finally, substituting Eq. 57 into Eq. 47 yields the incremental elastic-

plastic stress-strain relationship

where 2(:1J .
*;:; (2p - po) H +~ + p (2p - po) R

Equation 59 is applicable in both the strain hardening

(60)

and strain softening regions and is, of course, applicable at the

critical state. If P < P /2 the model is either strain hardening
- 0

or at the critical state and Eq. 59 is suitable for the numerical

formulation used here. If p > P /2 the model is strain softening
o

and hence would not be suitable for application here.

In order to get around this problem we could introduce a

perfectly plastic idealization in the strain softening region which

would be compatible with the modified Cam-clay model. For instance

we might use the critical state line as a perfectly plastic yield

surface. A simpler approach would utilize the current value of the

modified Cam-clay yield surface as a perfectly-plastic yield surface.

The stress-strain equations would still be defined by Eq. 59, however,
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~ would now be defined by

If we utilized Eq. 59 for the incremental stress-strain

equation and define *by Eq. 60 for p ~ p /2 and by Eq. 61 for p >
o

p /2, we have then a complete stress-strain model suitable for use
o

(61)

in a tangent stiffness approach. This model has one potential draw-

back, that is, if the hydrostatic stress component is zero, the

incremental stress-strain equations are singular. This may be

troublesome for some boundary value problems. To avoid this problem,

Zienkiewicz and Naylor (83) have suggested using a model which is

linear in the elastic region.

Boundary Value Problems and the Cambridge Soil Models

Smith (67) has used the so-called Cam-clay model to analyze

the plan~ strain, drained behavior of a pressurized thick cylinder -

of clay. Smith and Kay (68) analyzed the same probiem using modified

Cam-clay as well as Cam-clay. In both papers elastic strains were

assumed to be identically zero. Zienkiewicz and Naylor (82) have

analyzed the drained behavior of modified Cam-clay in the triaxial

test. Some elastic distortional flexibility was introduced into the

model.

Zienkiewicz and Naylor (83) have considered a clay layer

consolidating under a footing load. The soil skeleton was modeled

by a variant of modified Cam-clay. Elastic behavior was assumed to

be linear and in the strain hardening region a modified Cam-clay
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yield curve was used. In the strain softening region a softening

Mohr-Coulomb type expression with a nonassociated flow rule was

utilized.
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3. INCREMENTAL EQUILIBRIUM EQUATIONS

3.1 Preliminaries

The purpose of this chapter is to develop the governing

differential equations by introducing the preceeding stress-strain

relations into equilibrium equations which reflect the changing

geometry of the soil stratum. We assume that the magnitude of the

deformations is such that geometric changes caused by deformation

must be considered when writing the equilibrium equations.

Herein, we formulate a set of equilibrium equations (in

virtual work form)for a small increment of deformation superimposed

on an already deformed and stressed body (initial configuration).

Our final 6bjective is to determine the" tangent stiffness of the body,

with due consideration given to large deformations.

We note to begin with that the equations of continuum

mechanics can be posed in Eulerian or Lagrangian form. Briefly, in

a Lagrangian formulation all quantities (e.g., stress and strain)

are referred to coordinates associated with some reference configura­

tion, perhaps the undeformed condiguration of the body. In an

Eulerian formulation all quantities are referred to coordinates asso­

ciated with the current configuration of the body. Lagrangian and

Eulerian coordinates are sometimes referred to as material and

spatial coordinates respectively.

We differentiate now between a Lagrangian incremental formu­

lation, an Eulerian incremental formulation and a mixed incremental
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formulation. Both the Lagrangian and mixed incremental equations

employ a kno~1 material reference state. The reference state used

in the Lagrangian incremental approach is the same for all increments·

and is usually the undeformed, unstressed state of the body. The

reference state employed in the mixed formulation is the current

spatial configuration of the body, that is, the. current Eulerian

coordinates of the body, and this reference state is updated following

each incremental step. A pure Eulerian incremental formulation,

obtained by taking the first variation of the nonlinear Eulerian

. equations, has also been presented in the literature. A mixed

incremental formulation will be utilized here.

3.2 Some Previous Finite Element Work

Incremental approaches to geometrically nonlinear structural

problems have appeared in the finite element literature since 1960.

However, the mechanics of incremental deformations was a subject of

interest considerably before this time. Linearized mechanics of an

initially stressed body was discussed by Biot (5)(6). Biot (7)

presented a comprehensive treatment of the subject. In the context

of an incremental approach to nonlinear problems, Biot's formulation

is mixed.

Turner, Dill, Martin, and Melosh (72) introduced the

incremental finite element approach to the solution of geometrically

nonlinear structures. A somewhat long derivation leads to a stiffness

matrix for a plate element which includes the infinitesimal stiffness

matrix and so-called geometric or initial stress stiffness matrix.
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The incremental equilibrium equations are meaningful when used pro­

perly in the context of a mixed incremental approach, as this term is

defined here. Strains are assumed to be small.

Martin (44) introduced the Green strain tensor into an

incremental formulation of the small strain, large rotation problem.

The stiffness matrix so developed can be used in a consistent mixed

approach in the following two ways. If one takes the initial stress

as the Kirchhoff stress (accumulated from the undeformed configuration),

the stiffness matrix is referred correctly to a local coordinate

system which has followed the element rotation. This would be the

natural way to handle beam-column problems. One might alternately

take initial stresses in the global system, and the incremental stiff­

ness matrix will hence also be referred to the global system.

Wissmann (75) presented a Lagrangian, tensor formulation

for bodies suffering large rotations but small strains. A set of

Lagrangian incremental equations was obtained through a linear Taylor

expansion of the nonlinear equations about a stressed, deformed con­

figuration.

Felippa (25) introduced a virtual work equation for ini­

tially stressed bodies. The incremental approach is mixed and, as

indicated by Fernandez and Christian (26), may only be strictly

applicable to the small strai~ large rotation problem. It appears

tha~ Felippa (25) was the first to combine both material and geometric

nonlinearities, solving a plastic buckling problem.
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In a manner similar to Wissmann (75), Mallett and Marcal

(40) developed Lagrangian incremental equations for linear elastic

structures suffering large rotations. The so-called initial displace­

ment matrix, unique to the Lagrangian incremental approach, was dis­

cussed in some detail. Marcal (42) used a virtual work approach to

formulate Lagrangian incremental equations for the elastic-plastic,

large rotation problem.

Yaghmai (77) presented an in-depth study of incremental

virtual work formulations of the large strain, large rotation problem.

Both Lagrangian and mixed incremental approaches were considered and

the mixed formulation was applied to shells of revolution.

Lagrangian incremental formulations for problems involving·

large strains as well as large rotations were presented by Hartz and

Nathan (32), Oden (50) and Hibbitt, Marcal and Rice (33). Hartz

and Nathan considered hyperelastic materials and obtained incremental

equations through a Taylor expansion of the nonlinear equations. A

hierarchy of nonlinear theories was presented in the manner of Novo­

zhilov (4·9). Oden developed incremental equations by considering

a small perturbation about a known configuration. Hibbitt, Marcal

and Rice used virtual work to formulate incremental equations. A

rationally developed incremental elastic-plastic constitution law

relating Kirchhoff stress and Green strain was presented in the paper.

Hofmeister, Greenbaum and Evensen (36) presented a mixed

incremental formulation for the elastic-plastic, large strain, large

rotation problem. A modified version of the incremental equations,

. -39-



accounting for nonequilibrium of the initial stress state, was dis­

cussed. A similar modification for a small strain Lagrangian formula­

tion was proposed by Strickland, Haisler and Von Riesemann (69).

They demonstrated through numerical example the superiority of the

modified incremental approach as compared to the conventional incre­

mental approach.

Dupuis, Hibbitt, McNamara, and Marcal (24) and Zienkiewicz

and Nayak (80) presented parallel Lagrangian and Eulerian incremental

formulations. The finite element concept was used explicitly in the

derivations of both papers, and the incremental equations were obtained

by taking the first variation of the nonlinear equations. Dupuis et al

assumed strains to be small, while Zienkiewicz and Nayak consider

large strains. In addition Zienkiewicz and Nayak discussed a large

strain, elastic-plastic formulation.

Finally, Fernandez and Christian (26) considered the effect

of large deformations on some soil mechanics problems using the

in~remental approach of Biot (7).

The bibliography presented here represents only a small part

of the finite element: literature on geometric nonlinearities.-A good

overview of the subject is presented by Oden (50), and an informative

comparison of solution techniques is presented by Haisler, Strickland

and Stebbins (31). Additional references can be found in Gallagher

(28) and Oden (51).
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3.3 Mixed Incremental Formulation

\vhen presenting an incremental formulation, one must first

of all be careful to differentiate bet~veen Eulerian, Lagrangian and

mixed approaches. Secondly, in the context of large rotations and

deformations, "stress" and "strain" must be precisely defined.

Finally, an incremental formulation is not complete until one has

described fully the procedures for progressing from increment to

increment.

We make no a priori assQmptions concerning the magnitude of

rotations or strains. However, the equations governing incremental

deformation are predicated upon the assumption that incremental

strains are an order of magnitude smaller than incremental rotations.

The large strain phenomenon is captured by updating the geometry at

the end of each increment.

A brief word concerning the notation used in this chapter

is appropriate here. We use indicial notation and the associated

summation convention. Any term containing a repeated index is to be

summed over that index (from 1 to 3). A comma followed by a subscript

indicates a partial derivative with respect to current material coor­

dinates.

To formulate the equations governing an increment of defor­

mation we consider two different configurations of the body, an initial

configuration and a subsequent configuration. The stresses, strains

and displacements in the initial configuration are presumed known

and have been determined through a sequence of incremental steps.
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We note that due to the approximate nature of the analysis, the initial

stresses probably do not satisfy identically the equations of eq~li-

brium. The subsequent configuration is reached through a further

increment of deformation, and it is the incremental stresses, strains

and displacements that we wish to determine.

Equations of equilibrium for the subsequent configuration

are written in terms of the geometry of the initial configuration.

We can say that we use a Lagrangian formulation to prescribe equili-

brium of the subsequent configuration where the material coordinates

are the coordinates of the body in the initial configuration. Initial

stresses are referred to a global reference frame, and the initial

geometry is a deformed geometry determined by. previous increments.
I

Before beginning the analysis, it might be helpful to

introduce some of the terminology to be used here. We will refer to

three different stress tensors:

. u .. - Initial Cartesian stress tensor referred to a global reference
~J

frame. It is to be clearly understood that these are physical

stress components representing force per unit of area of

the initial geometry. This tensor is called Euler's stress

tensor in the engineering mechanics literature. In addi-

tion u .. is the Eulerian stress tensor in the subsequent
~J

configuration.

T .. - A Cartesian stress tensor in the subsequent configuration.
~J

The stress components are referred to a locally rotated

Cartesian frame which varies from point to point. These
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are physical stress components, that is, force per unit

of area of the subsequent geometry.

S .. - Kirchhoffs stress tensor (27). This tensor will be formally
~J

defined later, it being noted however that Kirchhoff's

stress tensor describes the stress state in the subsequent

configuration as referred to the geometry of the initial

configuration. These are not physical stress components as

defined above.

We will also refer to two different strain tensors. Green's strain

tensor (27) is defined as

1
€. • = -2 (u . . + u. . + uk . uk . )
~J ~,J J,~ ,~.,J

and the infinitesimal strain tensor is.

1
e"=-2(u.. +u .. )
~J ~,J J,~

where u. is the incremental displacement vector.
~

(62)

(63)

Consider now a body situated in a fixed Cartesian reference

frame (X,Y,Z); Referring to Fig. 12, let s denote the boundary surface

of the body in its initial configuration and s' denote the boundary

in the subsequent configuration. Let (x l ,x2 ,x
3

) be the initial

Cartesian coordinates of a generic point in the body, and let (Sl'

S2,S3) be the Cartesian coordinates of the same point after an incre-

ment of deformation. We write

s. = x. + u.
~ ~ ~
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Equilibrium of the initial state is implied by the virtual

work expression

s
s

T. ou .ds + S
~ ~

v
P F.(x) Ou. dv = S

o ~ ~

v
0" •• oe .. dv
~J ~J

(65)

where T. is the boundary traction vector per unit of initial area,
~

F. (x) is the body force vector per unit mass and p is the mass density
~ 0

of the initial configuration. It is assumed here that body force is

purely a function of position in the fixed reference £rame. The

virtual displacement field is denoted by ou. and is identically zero
~

. where displacements are prescribed. Also

oe.. = -2
1

(( 0u .) ..+ (0 u . ) .}
~J ~ ,J J ,~

where we note for the sake of clarity that

O(Qu.)
~(ou;) . = -:---='-

~ ,J ox.
J

. (66)

(67)

We now consider equilibrium of the subsequent configuration.

The Kirchhoff stress tensor in the subsequent configuration is denoted

by S .. and is defined as (27),
~J

p ox. ox.
Sij = po os~ ~ ~kt

where p is mass density in the subsequent configuration and O"kt

is the Eulerian stress tensor. in the subsequent configuration. We

no te that S .. is symmetric.
q

(68)

Remembering that the equation of equilibrium of the subsequent

configuration is to be written in terms of the geometry of the initial
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configuration, we note that the internal virtual work per unit of

initial volume is the product of Kirchhoff's stress tensor and the

variation.of Green's strain tensor (49), that is,·

v
S .. Oe .. dv

1.J 1.J
(69)

Equilibrium of the subsequent configuration is then implied by the

virtual work expression

s
s

(T. + 6T.) Ou. ds + S
1. 1. 1.

v
P F.(S) Ou. dv = So 1. 1.

V

S .. Oe .. dv
1.J 1.J

(70)

where 6T. is the incremental surface traction vector per unit of initial
1.

area. We note that the simplicity of the incremental traction vector

shown here hides a more complex phenomenon in which 6T. may be a function
1.

of incremental boundary displacements as well as incremental boundary

forces (51)(33). Since surface tractions are not of primary concern

here, we retain this simplified representation.

We write now,

S ..
1.J

(J •• + 6S ..
1.J 1.J

(71)

and call 6S .. the incremental Kirchhoff stress tensor. Substituting
1.J

Eq. 71 into Eq. 70 and noting that

1 .
Oe .. = oe .. + -2 [u1 . (OUk ) . + uk . (OUk ) .) (72)

1.J 1.J C,1. ,J ,J ,1.

we obtain

S 6T. cU. ds + S Po 6F. Ou. dv + [f T. ou. ds + S P F. (x) Ou. dv
1. 1 1 1 1 1. 0 1 1

S V S v

S Oe .. dv} J 1
(OUk ) . (ollk) ,J dv(J •• = (J •• -; uk . + uk .

1J 1J 1J 2 ,1 ,J , Jv v
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+S
v

M .. ce: .. dv
1J 1J

(73)

where 6F. = F.(~) - F.(x)
1 1 L

Regarding Eq. 73, we note, first of all, th.at the left

(74)

hand side of the equation is devoid of unknown incremental quantities.

Secondly, the expression in braces on the left-hand side of the

equation would be identically zero if the initial stress distribution

satisfied the equation of equilibrium (Eq. 65). However, recognizing

the approximate nature of the analysis, we retain this expression as

per Hofmeister, Greenbaum and Evensen (36). If one could find

incremental stress and displacement distributions satisfying Eq. 73

for all kinematically admissible virtual displacements, the subsequent

configuration would be in a state of equilibrium.

3.4 Two Sets of Linearized Incremental Equations

To this point no approximating assumptions have been made.·

Equation 73 is an exact statement of the equilibrium of the subseq~ent

configuration. In what follows two linearized versions of the incre-

mental equilibrium equations are presented. We linearize first without

making any assumptions concerning the relative magnitudes of strains

and rotations and find the resultant equations to be asymmetric.

By assuming the order of magnitude of the incremental strains is less

than that of the incremental rotations, we are led to a second set of

linear incremental equilibrium equations which are symmetric.

To begin with we note that in the context of small displace~

ments, our elastic-plastic constitutive law relates physical Cartesian
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stress rate to the infinitesimal strain rate. In the context of a

large strain, large rotation analysis, care must be taken to relate

the proper stress increment to the proper strain increment. Consider

now the initial Eulerian stress tensor for a two-dimensional body as

depicted in Fig. 13. During an increment of deformation, the neigh-

borhood of a generic point translates, rotates and deforms, where

to the first order the rotation is .defined by

(75)

Physical stresses in the subsequent configuration, referred to a local

coordinate system rotated an amount wfrom the fixed reference frame,

are depicted in Fig. 14. We write

'l" •• = cr .. + 6'l" ••
1.J 1.J 1.J

It is clear that if the neighborhood of the generic point suffers

rotation but no deformation, then

6'1" •• = 0
1.J

and '1" •• = cr .•
1.J 1.J

(76)

(77a)

(77b)

We thus propose to use the elastic-plastic constitutive law developed

in Chap. 2 in the following manner,

~T •• ==
1.J

(78)

We show iO Appendix I that the incremental Kirchhoff stress

tensor is related to 6T .. , to the first order, in the following
1.J

manner (2 - D plane strain),
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= t,'f
22 +

a a

-20"12 (79)

Writing the above expression in indicial notation, we have

t,s . . = t,'f .. + '¥. . e
~J ~J ~Jpq pq

(80)

Substituting Eq. 80 into Eq. 73, rearranging some terms and elimina-

ting products of incremental quantities, we obtain the following

linear incremental equilibrium equation

S (T. + t,T.) ou. ds + S Po F. (~) ou. dv - S 0" .• oe .. dv
~ ~ ~ ~ ~ ~J ~Js v v

= S 0" •• uk . (auk) . dv + S (t,'f. . + '¥ .. e
pq

) Oe .. dv
v ~J ,~ , J v ~J ~Jpq ~J

Considering the '¥ matrix defined by Eq. 79, one can readily show

that the differential equilibrium equations associ.ated with the

(81)

virtual work expression (Eq. 81) are identical to the two-dimensional

incremental equations developed by Biot (7).

An interesting feature of Eq. 81 is the asymmetry of

matrix '¥. If a finite element expansion is employed in conjunction

with virtual work Eq. 81, the asymmetry of the '¥ matrix will cause

the set of discrete equilibrium equations to be also asymmetric.

Although the solution of asymmetric sets of linear simultaneous equa-

tions presents no conceptual difficulties, there are some practical

drawbacks involved in such solutions. Considering for the moment

direct solution algorithms as coded for a digital computer, core

storage required for the equations is approximately twice that needed

-48-



we further assume that incremental

of magnitude less than incremental

for a symmetric set~ and the time required to solve the equations is

also about twice that needed for a symmetric set. With these pena1-

ties in mind we return to our original incremental equilibrium equa-

tions to examine the possibility of eliminating asymmetric terms.

In \mat follows we do exactly this using a physical argument concern-

ing relative magnitudes of incremental quantities.

To linearize the incremental equilibrium equations, we made

the implicit assumption that incremental deformations and rotations

are "small". One consequence of assuming incremental deformations

to be small is that relative elongations and shears (as defined by

Novozhilov (49)> are given by Green's 'strain tensor (Eq. 62). If

deformations (€ .. ) are an order
~J

rotations (w .. = -2
1

(u .. - u ..»,
~J J,1 ~,J

the linear incremental equations are rendered symmetric.

Noting the following identity,

u .• = e .. - w..
1.,J 1.J 1.J

and incorporating the identity in Green's strain tensor yields

'. (82)

(83a)

or
(83b)

Clearly Green's strain tensor and the infinitesimal strain tensor

(e .. ) are of the same order of magnitude, and hence the infinitesimal
1.J

strain tensor is also of a lesser order of magnitude than the rotation

tensor. With this in mind we eliminate products of infinitesimal
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strain components to obtain the following approximate expression.

(84)

Considering again Eq. 80 and recalling our assumption

that incremental deformations are very small, we also incorporate the

following approximation as per Novozhilov (49),

6S .. ~ 6'T' •.
1.J 1.J

(85)

and eliminate the asymmetric part of the incremental equations. Our

new incremental equilibrium equation is then,

S (T. + 6T. ) ou. ds + S P F. (S) oU. dv - S (J •• Oe .. dv
1. 1. 1. o 1.. .1. 1.J 1.J

S V V

= S (J •.• (- eki OUlkj - Ulki oekj + Ulki OUl
kj

) dv + S 61" .. Oe .. dv (86)
v 1.J v 1.J 1.J

It is to be understood that we do not claim that soil response

is characterized by small deformation and large rotation. We have

merely shown that assuming incremental deformations to be smaller than

incremental rotations leads us to a set of symmetric equations .. To·

reiterate, it is still our intention to capture large deformations as

well as large rotations.

Although Eq. 81 is itself an approximate equation governing

incremental response, it more accurately describes the response of the

body than does Eq. 86. However, the symmetry characteristics of

Eq. 86 recommend it. If one chooses to use Eq. 86, then a greater

number of increments must be employed as compared to using Eq. 81.

The choice is not clear however since a greater computational effort
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is required per increment if the asymmetric equations are employed.

Actually, the choice we make here is governed by other

factors. Although the soil response we attempt to predict here is

highly nonlinear, material nonlinearities dominate geometric nonlineari-

ties. Increment size will be governed by the severity of the material

nonlinearities and hence even a relatively crude approximation can

capture the geometric nonlinearities. With this in mind we use here

the symmetric incremental equilibrium equation, Eq. 86.

3.5 Incremental Finite Element Equations

We first recast Eq. 86 in matrix form for the two-dimensional

plane strain problem. Some matrix definitions follow:

fu}
rUf'

= .~ ~

lu i. 2

fT} = ·r
T11\.T

2
)

F

fF} = {F~}

1'111b} = . 1"22

1"12

{"l1
1

fe} = e 22

Y12

(87a)

(87b)

(87c)

(87d)

(87e)

-51-



where

e U

(~}
e22

=
Y12

w

Clll(CY} = CY22
CY12

(87f)

(87g)

(88)

Noting that

and

. we have,

w =_·w
21

(89a)

(89b)

(8ge)

CYij (- eki 5wkj - wki 5ekj + wki 5wkj ) = CYll [e2l 5w + w5 e 2l + w5w]

+ CY12 [- ell 5w + w5 e22 ] + CY2l [e22 5w - w5 ell]

(90)

Finally, noting the.symmetry of the stress and strain tensors, the

right hand side of Eq. 90 ean be written in matrix form as,

5e U
T

0 0 0 -CY12 ell

5e22 0 0 0 CY 12 e22

OY12 0 O' 0
1
2(CY U -CY22 ) Y12

ow
1

(CY U +u22 )-CY12 CY 12 2(CY U '-CY22 ) w

'" T . '"
= foe} [A] f.e} (91)
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vlhere superscript "T" denotes matrix transpose. We ·note that [A]

is a symmetric matrix.

The incremental virtual work expression in matrix form is

thus

s
s

(6U}T (T + 6T} ds + S
v

Po (oU}T [F(s)} dv - S
v

T .
(oe} (a} dv

(92)
v v

Consider now a generic finite element. We write in symbolic

form

.(93)

where (v} is a vector of nodal displacements referred to the global

fixed Cartesian frame, and [N] is a matrix of coordinate functions.

In addition we write,

(e} :;:; [B] tv} (94)

and . (95)

Matrices (v}, [N],. [B] and [i] for a constant strain triangle are

explicitly defined in Appendix II.

We now rewrite Eq. 92 for a single element. Although

the equal sign is retained, we recognize that we have true equality

only when the contribution of all elements is .summed in the manner of

the conventional direct stiffness method. Element surface integrals

are identically zero unless part of the element boundary is coincident

with the body boundary. We have then,
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S [OV}T [NJTfT+ tiT} ds+ S Po [OV}T [N]T [F(s)} dv- S fOV}T [B]T [cr} dv
s v v

(96)
v v

Since Eq. 96 must be satisfied for all kinematically admissible

virtual nodal displacements we have,

[tiP} = S [BJT [A] [B] dv [v} + S [B]T [tI~} dv f v} (97)
v v

where we compute the nodal force vector as

s
[N]T [T+ tiT} ds + S

v
Po [N]T [F(S)} dv - S [B]T [cr} dv (98)

v

We introduce the symbolic constitutive law.

[tI~} = [D] [e} = [D] [B] [v} (99)

Hence {tiP} = S. [B]T [A] [Bldv [v} + S [B]T [D] [B] dv [v} (100)
v v

We label the tangent element stiffness matrix as [K]. where·

and

and

[K
m

] = S [B]T [D] [B] dv
v

[Ke] = S [BJT [A] [B] dv
v

(101)

(102)

(103)

We recognize [K ] as the conventional infinitesimal stiffness matrix
m

and [Ke] is the so-called geometric or initial stress stiffness matrix.

The stiffness matrix is referred to the global reference frame.
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3.6 Preparation for the Next Increment

Before analyzing a new increment we must determine the

Eulerian stress tensor, the mass density and element matrices [N],

[B] and [B] in the subsequent configuration. We have

O"u = 1"U cos2 w + 1"22 sin2 w - 1"12 sin2w (104a)

= • 2 cos2 w + 1"12 sin2w (104b)0"22 1" 11 s~n w + 1"22

1
(1" U 1"22) sin2w + 'T 12 cos2w (104c)0"12 = 2 -

where 0" •. is the Eulerian stress tensor in the subsequent configura­
~J

tion and 1" .. is defined by Eq. 76~ Also
~J

Po
P = ---=--­

1 + e ..
~~

(lOS)

and matrices [N], [B], and [B] are defined with respect to the sub-

sequent geometry.
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4. INTEGRATION OF THE DISPLACEMENT RATE EQUILIBRIUM EQUATIONS

4.1 Introduction

In Chap. 2 we developed a constitutive matrix relating stress

rate and strain rate, and. in Chap. 3 this matrix was 'used in the

formulation of the tangent stiffness of a generic finite element.

A direct sum of element stiffnesses and load vectors yields a set of

displacement rate equilibrium equations for the discretized body.

This chapter concerns the integration of these equations.

Since we employ here the so-called incremental plasticity

theory in which the material response is load path dependent, we deal

with displacement rates rather than displacements. If a nonlinear

elastic material model had been considered, we would have had the

option of formulating equations in termS Qf displacements and, perhaps,

solving these equations iteratively for any applied load. Here we

do not have that option and, although iterative techniques can be

employed in the solution, we are essentially dealing with an integra-

tion procedure, not an iterative procedure.

The displacement rate equilibrium equations are written as

follows,

. .
[K] fv} = fp} (106)

where V and P are the displacement vector and load vector respectively

of the discretized body. Matrix K is the current tangent stiffness

of the discretized body and is a function of the current stress state

and current configuration of the body. If plastic unloading is
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admitted, the tangent stiffness is also a function of the displacement

rate vector. As before, the super dot denotes rate and in particular

it implies differentiation with respect to a time like parameter

denoted by t. An initial condition associated with E~. 106 is

[Vet ; O)} ~ [oJ (107)

A numerical integration technique is utilized here in which

the applied load history (or applied displacement history) is divided

into a finite number of increments. In the next section we discuss

various me.thods for numerically approximating incremental response.

4.2 Determination of Incremental Response

All of the methods discussed here can be roughly described

as forward integration techniques. Some involve iteration while some

do not. Some utilize directly the tangent stiffness while others do

not.

Euler Integration Method

Perhaps the most obvious way of approximating the response

in an increment is to use the Euler integration method (38) in which

the tangent stiffnes$ at the beginning of an increment is used to

obtain a linear approximation for incremental response. For example,

referring t6 Fig. l5a, we suppose that the solution at point A is

known and we wish to determine incremental displacements ~V associated

with the applied incremental load ~P. We project along a tangent at

point A to obtain an approximate solution denoted by point B. We

can expect that after a number of increments the approximate solution

-57-



will diverge from the true solution as indicated in Fig. l5b.

In conjunction with a finite element approach, variations

of the Euler integration method have been used by Pope (53)~ Swedlow

et al (70), Marcal and King (43), and Yamada and Yoshimura (78) to

solve elastic-plastic problems. Pope (53) used a modified Euler

approach which accounts for unloading of previously plastified elements

as well as yielding of previously elastic elements. Since this

information can not be known a priori, an iterative scheme is used.

Each iteration involves the solution ~f a set of linear algebraic

equations. Marcaland King (43) used an approach suggested by Marcal

(41). Elements which yield for the first time during an increment

are assigned a weighted average of elastic and elastic-plastic stiff­

ness, and thus an iterative scheme is required. Yamada and Yoshimura

(78) used an Euler approach, however, only one element per increment

was allowed to yield.

Runge-Kutta Method

Richard and Blacklock (57) used a fourth order Runge-Kutta

method (38) to solve an elastic-plastic problem. Although the solu­

tion of four sets of. linear equations is required per increment, the

method was sho~m to be clearly superior to Euler's method, at least

for the particular problem considered.

Strickland et al (69) treated geometrically nonlinear

structures using an initial value formulation. Both a fourth order

Runge-Kutta technique and an Adams predictor-corrector method (38)

were used to solve the equations.
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Initial Strain Method

A number of incremental solution techniques, which do not

require formation of the tangent stiffness, have appeared in the

literature. One of these techniques, utilized in elastic-plastic

problems, is called the initial strain method. Consider now the

analysis of an increment. The stress rate-strain rate equation is

. .
[T} = [D] [e} (108)

If we employ the Euler method, the incremental constitutive relation-

ship is,

f~T} = [D ] fe}
. 0-

(109)

where D is the elastic-plastic constitutive matrix evaluated at the
o

beginning of the increment and, as in the last chapter, e denotes

incremental strain. An equivalent constitutive relationship is

where De is the elastic constitutive matrix. If somehow we knew the

value of the incremental plastic strain vector, we could use Eq. 110

rather than Eq. 109 to evaluate element stiffness. Equation 100

would thus become, neglecting geometric stiffness for the moment,

(Ill)
v v

The second integral thus corresponds to an effective load vector which

can be shifted to the left hand side leaving only the elastic stiff-

ness on the right.
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Gallagher et al (29) suggested this approach for the analysis

of linear elastic, hardening materials suffering small displacements.

The global elastic stiffness matrix is thus the same for each increment

and need be inverted or triangularized only once. The incremental

plastic strain vector determined in the immediately preceeding in-

crement is used to estimate the incremental plastic strain vector in

the increment being analyzed. For example, once incremental strain

and incremental stress have been determined, the increment of plastic

strain vector can be computed as

or

(112) .

(113)

where superscript -1 denotes matrix inverse. Equation 112 is associated

with the so-called constant strain method of computing plastic strain,

while Eq. 113 is associated with the so-called constant stress method

(39). As has often been noted the constant stress method breaks do\vu

in the presence of per~ect plasticity since matrix D contains no
o

inverse. The initial strain technique as proposed by Gallagher et

al (29) was used by Lansing et al (39) and Armen et al (4) to analyze·

elastic-plastic problems.

Considering again Eq. 110, if we could choose an incremental

plastic strain vector such that the incremental solution satisfied

Eq. 109, the initial strain method would be identical toan Euler

method. This suggests an iteration technique in which we select

an initial in~remental plastic strain vector (perhaps that from the
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previous increment), solve for incremental response, and compute a

new estimate of the incremental plastic strain vector. This procedure

would be continued until convergence was obtained.

The above approach was suggested by Argyris (3). A somewhat

similar technique was proposed by Capurso (11), where a proof of

convergence was presented. An interesting variation of the method

was used by Witmer and Kotanchik (76) to analyze perfectly plastic

materials. The iterative technique is such that the total stress

state at the end of the increment is guaranteed to satisfy the yield

inequality, while the incremental stresses and incremental strains

satisfy constitutive Eq. 109 where, however, matrix D is now evaluated
o

at the end of the increment.

Mendelson and Manson (46) used an initial strain iterative

approach to solve simple problems using deformation plasticity.

Mendelson (45) presented a generalization of this procedure for

incrementally plastic materials. This. approach appears to yield a.

tangent stiffness solution where the tangent stiffness is evaluated

at the end of the increment.

Initial Stress Method

Zienkiewicz et a1 (84) discussed a so-called initial stress

iteration technique for elastic-plastic problems. As in the initial

strain technique only the elastic stiffness need be formulated and

triangularized. A first estimate of the incremental stresses is

obtained from an elastic solution. A revised estimate of the incre-

mental stresses is obtained from

-61-



f ~'f} = [DJ f e} (114)

where the constitutive matrix is evaluated at the beginning of the

increment. The new estimate of incremental stresses will in general

not satisfy equilibrium for the discretized body. The resultant nodal

force unbalance is then distributed using the already reduced elastic

stiffness. This process is continued until convergence is obtained.

At each stage of the iteration process the constitutive matrix is

evaluated using the most recently determined stress state. The initial

stress technique as. proposed by Zienkiewicz et al (84) is similar to

the so-called modified Newton-Raphson iterative technigue (38).

A variant of the initial stress method was presented by

Zienkiewicz and Nayak (81). A first solution for the strains is

obtained by using the tangent stiffness at the beginning of the

increment (initial tangent stiffness). An associated stress state is

then obtained by numerically integrating the stress rate-strain rate

equations over the first estimate of the incremental strains. Since

these stresses can not be expected to satisfy equilibrium, a nodal

force unbalance exists. We can distribute the unbalanced nodal forces

using either the current tangent stiffness or the initial tangent

stiffness. Again this procedure is repeated until convergence is

obtained. If at each stage, the current value of the tangent .stiff­

ness is used to distribute the unbalanced nodal forces, the method is

similar to a Newton-Raphson iteration (38). If on the other hand,

the initial tangent stiffness is always used, the method is similar

to a modified Newton-Raphson iteration.
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The accuracy of the iteration procedures just described is

of course dependent upon increment size as is the case with all of

the methods discussed here. Even if a Newton-Raphson like procedure

is employed we must still use a fairly large number of increments

in order to obtain an accurate solution. This is the case regardless

of the convergence criterion used and simply reflects the fact that

we employ incremental plasticity theory;

4.3 The Mid-Point Integration Rule

We use here the so-called mid~point integration rule to

determine incremental response. This technique has been used previously

by Fe1ippa (25), Akyuz and Merwin (1) and Fernandez and Christian (26)

to solve elastic-plastic, geometrically nonlinear problems. A non­

linear one-dimensional load displacement curve is shown in Fig. 16a.

Presumably at point A the true solution is known and we wish to approxi­

mate incremental displacement 6V associated with applied incremental

load 6P.

The mid-point integration rule is motivated by the idea that

the secant stiffness, denoted by line AD, can probably be closely

approximated by the tangent stiffness evaluated at mid-increment

(half of the load increment). The mid-increment stiffness, of course,

is not known but we can estimate it. Referring to Fig. 16b, we first

apply half the incremental load and use the tangent stiffness evaluated

at point A to approximate the mid-increment solution denoted by point

B. We subsequently apply the complete incremental load and use the

tangent stiffness evaluated at point B to obtain an approximate
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incremental solution denoted by point C. In each increment we thus

solve two sets of linear) simultaneous) algebraic equations.

Herein the elastic-plastic constitutive matrix is modified

at mid-increment to reflect mid-increment stresses. However, neither

the geometry nor the geometric stiffness matrix is updated at mid­

increment) rather their value at the beginning of the increment is

used to compute mid-increment tangent stiffness. This was done in

order to save computation time) under the assumption that geometric

nonlinearities would not be as severe as material nonlinearities.

4.4 Plastic .Unloading

In any elastic-perfectly plastic body with a nonuniform

stress field) plastic unloading is a possibility even if the applied

loads or applied displacements are monotonically increasing. Herein

we check for plastic unloading following the calculation of mid-incre­

ment response.

If at the beginning of an increment an element is plastic,

the elastic-plastic constitutive matrix is used to calculate the

initial tangent stiffness. After mid-increment strains have been

determined we check for plastic unloading as follows. If A< 0, as

defined by Eq. 18) the element has suffered plastic unloading and the

elastic constitutive matrix is used to compute mid-increment tangent

stiffness. Otherwise) the elastic-plastic constitutive matrix is

utilized. Any element 'vhich has been found to load plastically at

mid-increment is assumed to still be plastic at the end of the increment
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regardless of ~vhether the end-of-increment stress state lies inside

or outside ·of the yield surface.

4.5 Stress Scaling Back to the Yield Curve

Consider for the moment an element which is found to be

plastic at the beginning of an increment, and assume that the stress

state lies exactly on the yield surface. A schematic diagram including

a yield curve and the initial stress state, denoted by point A, is

shown in Fig. l7a. At the end of the increment the stress state,

denoted by point B, probably lies some~vhat outside of the yield surface.

After a number of such load increments have been analyzed, the stress

state may lie far enough from the yield curve to render the analysis

of subsequent increments meaningless. A possible stress path produced

by a number of increments is denoted by broken line ABC.

In order to correct this situation we scale stresses back

to the yield surface at the end of each increment and at mid-increment.

Since there is no unique way to scale, we arbitrarily require that

the hydrostatic component and principal directions of the stress tensor

remain unchanged. A schematic stress path associated with stress

scaling is shown in ·Fig. l7b. As can be seen in the figure, stresses

are adjusted back to the yield surface at the end of an increment.

In general the scaled stressed can not be expected to satisfy

the equilibrium equations of the discretized body. We thus compute

an equilibrium correction vector as per Eq. 98 and apply this load

vector, along with the prescribed loads, in the next increment.
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4.6 Elements Which Yield During an Increment

We have yet to discuss the transition of an element from an

elastic to a plastic stress state. We discuss now a technique for

treating elements which yield during an increment.

Assume that the stress state at the "beginning of the incre-

ment lies within the yield surface. We then use the elastic consti-

tutive matrix to ~ompute th~ initial tangent stiffness. Let

(llS)

where p and J 2 are evaluated at the beginning of the increment.

Similarly, to evaluate k
2

we use the "stress state at mid-increment,

and k
3

is to correspond to the stress state at the end of the incre-

ment, which we do not yet know. However we can estimate k
3

as follows,

(1l6)

If k
3

is greater than the yield value k, we can expect that the element

will yield during this increment. In a somewhat arbitrary manner

we require that if

k 2 - k l 2

k-k s3"
. 1

the elastic constitutive matrix is used to compute mid-increment

tangent stiffness. If

(1l7)

(1l8)

we use a weighted average of the elastic and elastic-plastic constitutive
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matrices in a manner similar to Marcal (41).

To compute the averaged matrix, the stress state at mid-

increment is scaled to the yield surface using the technique described

in the previous section. The averaged constitutive matrix is then

computed as

[ D] = m [De] + (1 - m) [D]avg.

where k - k l
m = 2(k

2
- k

l
)

and D is evaluated at the scaled stress state.

(119)

(120)

If an averaged matrix has been used to determine mid-increment

stiffness, the element is assumed to be plastic at the end of the

increment regardless of whether the stresses lie inside or outside of

the yield surface. The final stress state is then scaled to the

yield surface. If the elastic constitutive matrix has been used to

compute mid-increment stiffness, we check for yielding at the end of

the increment. If the stress state lies outside the yield surface

we scale back to yield in preparation for the next increment. Other-

wise we leave the stress state unchanged and use the elastic cpnstitu-

tive matrix to start the rtext increment.

4.7 Solution of the Linear Algebraic Equations

We use here the so-called square-root method (38) to solve

the linear simultaneous algebraic equations associated with the mid-

point integration rule. The banded character of the global stiffness
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matrix was considered when coding this procedure for the computer.

A number of investigators have preferred to use iterative

procedures to solve the linear equations involved in elastic-plastic

incremental analysis (1) (43). Iterative methods are appealing since

we can obtain a reasonably good initial guess for the solution in the

current increment by using the known ~olution for the previous incre­

ment. Most investigators have, however, used direct methods and we

follow suit here.
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5. CHECK PROBLEMS AND NUMERICAL EXPERIMENTS

5.1 Introduction

There exist no closed form solutions for the class of

problems being considered here, that is, a punch bearing on a finite

stratum (or infinite halfspace) of elastic-plastic material under

the conditions of plane strain. Two extreme parts of the small dis­

placement solution are "however known--the linear elastic solution and

the plastic collapse or limit load solution, at least for some mat­

erials. However we have no absolute check on the accuracy of the elas­

tic-plastic intermediate response.

The numerical methods used here, the particular algorithms

used in the computer program as well as possible mistakes in the com­

puter coding are all potential sources of error. In order to demon­

strate that the computer program is giving reasonable and believable

results, a number of example problems are presented in this section.

We first discuss the solutions of some simple but nontrivial problems

followed by solution of complex problems that have been numerically

analyzed by other investigators. Finally we present the results of

some numerical experiments in which the effect of some of the variables

associated with the numerical methods used here are investigated.

5.2 A Plane Strain Compression Test

Consider a hypothetical one-dimensional plane strain

compression test of an elastic-perfectly plastic Mohr-Coulomb material.

Since the Mohr-Coulomb yield function is independent of the out-of-plane
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stress, the applied stress at which the material first yields is

identical to the maximum stress. However, this is not the case for

a Drucker-Prager material. After first yield, additional stress can

be applied and the change in the out-of-plane stress is just sufficient

to maintain the stress state on the yield surface.

For a Drucker-Prager material the stress at first yield is

dependent on Poisson's ratio, and the difference between the maximum

stress and the stress at first yield is most pronounced for a Poisson's

ratio of zero. Consider for example the following material parameters,

E = 500,000 psf

\) = 0

C = 500 psf

tp = 30°

With a and k defined by Eqs. 4 and 5 respectively, the applied stress

at first yield is 990 psf and the exact maximum applied stress is

1730 psf (same as for a Mohr-Coulomb material).

We show in Fig. 18 the complete Drucker-Prager stress­

strain curve for the material parameters shown above, as obtained

from the computer program utilized here. As would be expected first

yield occurs at about 1000 psf and the maximum stress is 1725 psf.

The open circles represent actual computed points.

5.3 An Elastic Large Deformation Problem with Uniform Stress

Consider now the plane strain problem shown in Fig. 19 in

which an elastic specimen is bounded on three sides by smooth rigid
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walls, and a uniform stress is applied to the fourth side. The linear

solution to the problem is, of course,

where

(J = E (u/-t )
o

E (1 - \J)E = -_::.-~-::---:J. _
(1 + \J) (1 - 2\J)

(121)

(122).

~ is the original length of the specimen and u is the vertical dis­
o

placement of the applied stress.

If displacements are large we might relate the stress to

the so-called logarithmic strain, that is,

(J = E ei (123)

where

Thus

u du
Ln [~

~ .,
Ln ~l _ ~u/~)]S 0

uJe~ =
~

= =
- u -

0 0 0 0

(J = E Ln [1 ~u/~ )]
0

(124)

(125)

A nondimensiona1ized plot of this equation is shown in Fig. 19 along

with two numerical solutions, one obtained using six increments and

one with twelve increments. It appears that the approximate solution

converges towards the true solution as the number of increments

increases.

5.4 Notched Tensile Specimen

A number of investigators have presented numerical results

for the plane strain notched tensile specimen (43)(84) and we also

consider this problem here. One half of the specimen, along with
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relevant dimensions and material proper.ties, is shown in Fig. 20, where

a = 24.3 kg/mm2 is the yield stress in simple tension. The material
o

is assumed to be elastic-perfectly plastic with a von Mises yield

condition and, in terms of the model used here, a = a and k = a 1/3 =
o

14.03 kg/mm2
• Kachanov's (37) slip-line .solution for this problem gives

a la = .8925max 0
(126)

where a is the maximum or collapse value of the applied stress a.
max

For a = 24.3 kg/mm2
, the limit stress a = 21.6 kg/mm2 •

o max

The finite element mesh used here is shown in the left hand

half of Fig. 20 and consists of 105 nodes and 169 triangular elements.

This mesh is similar to, but not exactly the same as, that used by

Zienkiewicz et al (84). In Fig. 21 the applied stress is plotted

versus the centerline displacement at the end of the specimen. The

curve remains almost linear up to 18 kg/mm2 , after which it bends

over quite rapidly. A fairly well defined limit load is reached at

about 22.5 kg/mm2 , only 4 percent above the slipline solution.

Zienkiewicz et al (84) reported a so-called lower bound for the limit

load of 19.4 kg/mm2
, that is, this was the last load at which their

iterative procedure converged. This solution represents a true lower

bound for the discretized body since the iterative procedure utilized

ensures that the discrete equations of equilibrium and the yield

inequality are satisfied at the end of each increment. However this

may not represent a lower bound for the continuum since the continuum

equations of equilibrium are in general not satisfied by a finite

element solution.
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Zones of yielding for loads of 15 and 18 kg(mm2 are shown

in the right hand half of Fig. 20 and are similar to those reported

by Marcal and King (43) and by Zienkiewicz et al (84). Yielding starts.

at the notch root and spreads upward and toward the centerline. At

18 kg(rnm2 the zone of yielding has just extended across the entire

specimen. Until this point, the load displacement response is essen­

tially linear and afterwards it becomes highly nonlinear.

5.5 Uniform Strip Load on Undrained Clay

Apparently Hoeg, ChriStian and Whitman (35) were the first

to treat soil as an elastic-perfectly plastic material for the pur­

pose of obtaining the. complete load displacement response of a strip

footing. A shallow layer of undrained clay, shown in Fig. 22, was

analyzed using the finite difference like technique of Ang and Harper

(2). The Tresca yield condition and its associated flow rule were

utilized with a cohesive strength of 17.5 psi, and the footing load

was assumed to be uniformly distributed.

Here we solve this same plane strain problem using the finite

element method and the von Mises yield condition. Both yield condi­

tions should give the same limit load (k defined by Eq. 5) but- the

intermediate response may be different. Two different meshes are

utilized here. One mesh is uniform (Fig. 22) and is similar to that

used by Hoeg et a1 (35), while the other is nonuniform (Fig. 24)

and is similar to that used here for a deeper soil stratum. Boundary

conditions in both meshes are identical to those used by Hoeg et al

(35). The base of the clay stratum is rig1d and perfectly rough,
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_mile the vertical boundary is assumed to be rigid and perfectly smooth.

The uniform mesh is shown in the left hand half of Fig. 22 and consists

of 120 nodes and 98 rectangular elements. Each rectangle is defined

by four constant strain triangles. Since the mesh is perfectly uniform

we are actually considering a loading width of 10.28 ft. rather than

10 ft. as used by Hoeg. We assume that this will make little difference

in the solution and subsequent results show this to be the case.

Results for the uniform mesh are shown in Fig. 23 where the

applied pressure is plotted versus the centerline displacement directly

beneath the load. The closed circles correspond to actual computed

points indicating that sixteen increments were used in the solution.

This solution agrees almost point by point with that presented by Hoeg.

We obtained here a well defined numerical limit load of 92 psi while

Hoegreported 90 psi. Both values are in remarkable agreement with

the exact value of 90 psi.

Va11iappan (73) also solved this same problem using the von

Mises yield condition and a somewhat coarser finite element mesh of

94 nodes and 150 triangular elements. As might be expected his solu­

tion, also shown in Fig. 23, lies above that presented here. The

initial stress method (84) was used to integrate the equations and

the last load at which this iterative technique converged was 78 psi.

Zones of yielding defined by the rectangular mesh are shown'

in the right hand half of Fig. 22. These zones agree fairly well with

those presented by Hoeg for loads of 53 psi and 90 psi.
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A nonuniform mesh consisting of 100 nodes and 90 elements

(Fig. 24) was also used to analyze this problem. Each quadrilateral

in the nonuniform mesh ,vas divided into four constant strain triangles.

Near the edge of the footing this mesh is finer than the uniform mesh

while away from the footing edge this mesh is somewhat coarser. The

two meshes gave nearly identical results except near the maximum load

where the nonuniform mesh overestimated the limit load by 7 percent.

For this particular problem in which the footing load is

uniformly distributed, there is no need for such a fine mesh near the

edge of the footing and the nonuniform mesh is probably to coarse away

from the footing. However, comparative analyses for a rigid footing

show the nonuniform mesh to be superior to the uniform mesh. Since

we are primarily concerned here with rigid footing and deeper soil

strata, a nonuniform mesh will prove to be a necessity.

5.6 Elastic Cantilever Beam

In order to investigate the geometrically nonlinear algorithms

used in the computer program, we consider here a cantilever beam

suffering large displacements. Although the nonlinear elastic solu­

tion for slim cantilever beams is known (rotations large, strains small,

shearing deformation negligible) we will not be able to check with this

solution because of the relative coarseness of the finite element mesh.

We will however be able to get some feeling for the affect on the

solution of geometric stiffness and equiiibrium correction.

The cantilever beam is 10 ft. long \vith a 1 ft. square cross-
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section. Poisson's ratio is equal to zero so that the out-of-plane

normal stress is identically zero. A uniform finite element mesh

was utilized consisting of 147 nodes and 240 triangular elements

with 7 nodes through the depth of the beam and 21 nodes along the

length. Portions of the mesh are shown in Fig. 25. The applied

load was assumed to be distributed parabolically over the cross­

section. Consistent nodal forces associated with a unit applied

load are shown in Fig. 25.

Some results are shown in Fig. 26 where the nondimensionalized

force PL2 /3EI is plotted versus the nondimensionalized vertical dis­

placement ~/L at the end of the beam. Here L is the beam length, P

is the applied load and I is the cross-section moment of inertia. The

lower solid line corresponds to the small displacement solution for

the discretized beam and is hence linear. The upper solid curve

corresponds to a nonlinear solution obtained using 16 increments.

The three additional solutions were obtained using 8 increments.

The solution denoted by open circles utilized the complete

integration scheme as described in the previous chapter. The solution

denoted by triangles did not use equilibrium correction, while the.

solution denoted by open squares utilized neither equilibrium correc­

tion nor the geometric stiffness matrix. Comparing the three solu­

tions with the sixteen increment solution, which we expect is close

to the exact solution, the complete integration scheme is clearly

superior to the alternate schemes.
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5.6 Rigid Strip Footing on a Soil Stratum

In this section we consider a number of variables associated

with the finite element discretization and the numerical integration

technique used here. The problem used for the experiments is the

same as that considered in the next chapter, that is, a 5 ft. wide

rigid strip footing bearing .on a 50 ft. deep soil stratum supported

by a rigid rough base. The horizontal extent of the stratum was

arbitrarily set at 50 ft. from the footing center and a smooth rigid

boundary was prescribed. The following soil 'parameters were used

E = 500,000 psf

\i =' .3

C = 500 psf

cp = 30°

Y = O.

where y is soil weight per unit volume.

Finite Element Discretization

Three finite element meshes, shown in Figs. 27, 28 and 29,

were utilized for the numerical experiments. Each mesh is composed

of a number of triangular and quadrilateral regions. Three different

arrangements of triangles were used to define stiffness for the
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quadrilateral regions. In the first arrangement, pictured in Fig. JOa,

the quadrilaterals are divided into two triangles with the dividing

diagonal having the same orientation for all quadrilaterals. The

second arrangement is shown in Fig. Jab, and here the diagonals are

staggered. In the third arrangement, shown in Fig. 30c, the quadri­

lateral is subdivided into four triangles connected to a fifth node

located at the quadrilateral centroid. Static condensation is used

to reduce the lOxIa quadrilateral stiffness to the desired 8x8 (74).

Triangle stiffness is based on a linear displacement expansion

(constant strain triangles).

All three meshes, as shown in Figs. 27, 28 and 29, are finest

near the corner of the footing and get progressively coarser as the

distance from the corner increases. It is not the aim here to capture

the stress singularity at the corner since it is well known that it

is difficult or perhaps impossible to do this with analytic finite

element expansions (47). The aim here is simply to make the mesh

fine where stress gradients are high.

We discuss now the results of four numerical experiments

in which the effects of mesh size, element arrangement, increment

size, and stress scaling with associated equilibrium correction were

investigated. Since the footing is assumed to be rigid, displacements

rather than stresses are prescribed beneath the footing. For all of

the numerical" experiments the footing is assumed to be smooth and

displacements are assumed to be small, that is, for the moment we

consider only material nonlinearities. The theoretical bearing capacity
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obtained by Prandtl (56) is q = 15,040 psf. Shield (65) has shmvn that
o

the Prandtl solution is the true limit load for weightless soils with

a Hohr-Coulomb yield condition and the associated flow rule.

Effects of Mesh Size

Results for the three meshes are shown in Fig. 31 where we

plot average stress beneath the footing, q, versus vertical displace-

ment of the footing. Element arrangement 3 (Fig. 30) was used to

compute quadrilateral stiffness for.the quadrilateral regions shown

in Figs. 27, 28 and 29, and an increment size of .04 ft. of footing

displacement per increment was used. Although the curves shown are

'smooth, there were some oscillations in the solutions, particularly

at the higher loads. As might be expected, the finest mesh gave the

softest response. Even with the finest mesh there is still a notice-

able difference between the theoretical plastic limit load and that

determined from the numerical finite element solution. If we take

the limit load of the discretized body associated with mesh 3 (Fig. 29)

to be 18,500 psf, then this load is approximately 23 percent greater

than the theoretical limit load.

Effect's of Element Arrangement

Figure 32 shows the results for the three element arrange-

ments for the quadrilateral regions shown· in Fig. 28 (mesh 2) and .04

ft. of footing displacement per increment. Most remarkable is the

large difference in the solutions obtained from arrangements 1 and 2.

Many writers have commented on the stress discontinuities between

adjacent elements when constant strain triangles are used in finite
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element analysis (for a recent example see Owen et al (52)). In

regions where the stress gradient is high, element stresses tend to

oscillate from element to element. This tendency is particularly

noticeable in element arrangement 1 where stresses at the higher

loads Dscillate from tension to compression. The best solution

was obtained with element arrangement 3, but we should note that

computation time was approximately 40 percent greater than the time

required for arrangements land 2.

Effects of Increment Size

The effect of the size of the footing displacement increment

·is shown in Fig. 33. Mesh 2 (Fig. 28) with element arrangement 2

for the quadrilateral regions was used for the three solutions. Three

displacement increments were utilized, 0.02, 0.04 and 0.08 ft. per

increment. Up to a footing displacement of about 0.7 ft. the solutions

are essentially the same. After this the three curves diverge somewhat

with the smallest increment size giving the softest response. We

can see that the integration scheme is not highly sensitive to incre­

ment size, at least at low and intermediate load levels.

Effect of Stress Scaling

In the context of geometrically nonlinear analysis, Strick­

land, Haisler, and Von Riesemann (69) have shown that correcting for

nonequilibrating stresses significantly increases accuracy when used

in conjunction with an incremental Euler integration approach. The

cantilever beam analysis presented here corroborates this conclusion.

We show now that for elastic-plastic analysis, scaling stresses back
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to the yield surface and subsequently distributing the unbalanced

nodal forces during the next increment is also computationally effi­

cient.

In Fig. 34 two of the solutions were obtained without scaling

stresses back to the yield surface after each increment. Thus, to

within round-off and truncation errors, stresses determined at the

end of each increment satisfied equilibrium. A third solution, shown

by open circles in Fig. 34, was obtained using stress scaling and

equilibrium correction. We note first of all that for the same

increment size there is a noticeable difference in the solutions with

and without scaling. We note secondly that the solution without

scaling can be made to agree closely to the solution with scaling by

using a very small increment size. We can thus conclude that for a

small increase in computational effort, we get a significant increase

in accuracy by using stress scaling with equilibrium correction.
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6. ELASTIC-PLASTIC ANALYSES OF A FOOTING ON HOMOGENEOUS CLAY STRATA

6.1 Introduction

We consider here a 50 ft. deep soil stratum loaded by a

5 ft. wide strip footing. The width of the stratum is taken to be

50 ft. The base of the soil stratum is assumed to be rigid and perfectly

rough, and the footing is also assumed to be rigid and perfectly rough.

The finite element mesh shown in Fig. 29 was used for all of the analyses

presented in this chapter, where the quadrilateral regions were defined

by four constant strain triangles. The boundary conditions are iden­

tical to those shown in Fig. 29.

An elastic stratum is treated first in order to compare

the finite element solution with an existing exact solution. Subse­

quently we consider an elastic-plastic effective stress analysis of an

overconso1idated clay, and finally an elastic-plastic total stress

analysis of an undrained clay is presented. For the elastic-plastic

cases both small and large deformation analyses are considered, that

is, solutions are presented with and without geometric non1inearities

included in the equilibrium equations (as described in Chap. 3).

6.2 Elastic Solution for a Rough Rigid Footing

We compare in this section finite element solutions for a

finite elastic stratum with exact solutions for an infinite ha1fspace

(48). The finite element solutions and the exact ha1fspace solution

should be in general agreement near the footing but will not necessarily

agree near the soil stratum base. Finite element stresses presented
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in this chapter correspond to nodal stresses and ",ere determined from

a simple average of the stresses in all triangles adjacent to a

particular node. For example, if a node is adjacent to four quadri-

lateral elements, each nodal stress would be an average of eight

triangle stresses.

Vertical and horizontal stress distributions for a Poisson's

ratio of 0.3 are listed in Tables I through 3. The sign convention is

shown in Fig. 1 where positive normal stresses correspond to compression.

In Table I contact stress distributions at the footing-soil interface

. are presented. In Table 2 stress distributions along a vertical line

beneath the footing centerline are presented, while Table 3 shows stress

distributions along a vertical line beneath the footing corner.

Referring to Table I, both horizontal and vertical contact

stresses, as computed from the finite element metho~ are seen to agree

well with the halfspace exact solution, except near the footing corner.

The vertical stress components, cr , agree somewhat less well than the
y

horizontal stress components, cr , with the differences ranging from
x

3 to 10 percent. Considering now the stresses below the footing center-

line (Table 2), the vertical stress components, cr , agree remarkably
. y

well whereas the horizontal stress components, cr , differ somewhat.
x

This difference most likely reflects the finite stratum depth in .the

finite element analysis and should not be interpreted as an indicator

that the present finite element mesh is not fine enough to capture the

true solution. Likewisi considering the stress distributions beneath

the footing corner (Table 3) the vertical stress components agree well
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while the horizontal stress components differ somewhat.

In Tables 4 and 5 halfspace stress components are presented

for Poisson's -ratios of 0.48 and 0.5, while the corresponding finite

element stress components are presented for a Poisson's ratio of 0.48

only. A Poisson's ratio of 0.5 is relevant to undrained total stress

analysis in which clay is assumed to be incompressible. However the

displacement formulation utilized herein does not admit a Poisson's

ratio of 0.5 since the constitutive matrix becomes singular. Never-

theless we can attempt to approximate the incompressibility condition

by using a high value of Poisson's ratio such as 0.48. We present

"exact solutions for both values of Poisson's ratio in order to examine

the validity of this approximation.

Examination of Tables 1 through 5 reveals that Poisson's

ratio has little effect on the vertical stress components, cr. Con­
y

sidering Table 4 we see that the horizontal contact stresses are

decreased by about 10 percent "when Poisson's ratio is reduced from 0.5

to 0.48. However referring to Table 5, we need move only 1 ft. below

the footing for the difference to be reduced to about 3 percent. We

conclude therefore that we can obtain a reasonable approximation for

the incompressible case by using a Poisson's ratio of 0.48. We note

further the good correlation between the finite element stresses and

the halfspace stresses as indicated in Tables 4 and 5.
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6.3 Elastic-Plastic Analysis of.a Footing on an Overconsolida~ed

Stratum of Insensitive Clay

We deal here with an effective stress analysis of an over-

consolidated clay. Presumably the load rate is such that no excess

pore water pressures are generated. The material parameters utilized

in this study are:

E = 5xl06 psf cp = 10° 20° and 30°,

\) = 0.3 Y = 50 pcf

C = 500 psf K = 1.0
0

where K is the ratio of the initial in-situ horizontal and vertical
o

stress components. Only the friction angle cp is varied here with all

other parameters being held constant.

In Chap. 5 we presented a solution for a smooth footing

bearing on a weightless C-cp soil. For a friction angle of 30 degrees

and a cohesive strength of 500 psf, it was shown that the numerically

determined limit load (limit load determined from the finite element

analysis) was 23 percent greater than the exact limit load. We con-

sider here a more realistic problem of a rough footing bearing on a

ponderable soil, for which exact limit loads have not as yet been

determined. We can, however, use the limit analysis technique of Chen

and Davidson (12) to estimate the limit loads to within 1 to 2 percent

for the soil parameters considered here. The approximate limit loads

are thus q = 4350, 8260 and 18,720 psf for friction angles of cp = 10°,
o

20° and 30° respectively.
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Load-Displacement Curves

Load displacement curves for large and small deformation

analyses are shown in Figs. 35 through 37 for the three friction angles

mentioned above. The closed and open circles represent actual computed

points and the solution following each increment is plotted. None of

the solutions are perfectly smooth but show some oscillations.

Considering first the small deformation solutions, we note·

that the limit loads are overestimated in each case with the error

increasing with increasing friction angle. For friction angles of

10, 20 and 30 degrees, the errors are 10, 18 and 26 percent respectively.

Considering the entire elastic-plastic solution where the load is

increased from zero to failure, we know from the above discussion

that the initial part of the load-displacement curve is highly accurate

because the soil stratum is behaving essentially as an elastic medium.

However, as the load ~ncreases we can expect that the numerical solu­

tion presented here diverges from the true solution, given the known

error in the limit load. It is also apparent that as the friction angle

increases, the mesh must become finer if the limit load is to be cap­

tured within a specified tolerance.

Consider now the solution obtained from a large deformation

analysis for the case cp:= 10° (Fig. 35). Except near the limit load

the load displacement curve corresponding to the large deformation

analysis is identical to that of the small deformation solution.

Near the limit load the two curves diverge somewhat with the large

deformation curve appearing to approach a limiting load only 2 percent
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above the small deformation numerical limit load at the displacement

of 0.27 ft. oIn this case (~ ; 10 ) we can thus say that the small

deformation analysis is valid for all load levels up to and including

the limit load. In addition the small deformation limit load is

clearly a meaningful measure of the maximum bearing capacity of the

footing.

Referring now to Fig. 36, we can see that if the friction

angle is increased to 20 degrees, the load-displacement curves corres-

ponding to the small and large deformation analyses remain essentially

the same except near the small deformation limit load. Whereas the

small deformation curve bends over and approaches a maximum, the

large deformation curve continues to rise without any apparent limit.

Although in this case the small deformation limit load is not a true

measure of the maximum bearing capacity of the footing, it is never-

theless an indicator of the load level at which large increases in

footing displacement can be expected for small increases in footing load.

Although there is a marked difference in the solutions by

the small and large deformation analyses for the case when ~ ; 30°

(Fig. 37), the two curves are still virtually the same up to about 75

percent of the numerical limit load. Beyond this point the solutions

diverge. There is no noticeable break in the large deformation curve,

rather the curve rises smoothly past tbe small deformation numerical

limit load. We may conclude that for this particular set of soil

parameters, the small deformation perfectly plastic limit load solution

is not a meaningful measure of the bearing capacity of the footing. We
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might note, however, that a friction angle of 30 degrees is higher than

would be expected for an overconsolidated clay.

Clearly with. all other parameters held fixed, an increase

.in the friction angle is associated with an increase in the difference

between the small and large deformation solutions. In general if the

elastic parameters are held fixed while the strength parameters increas~

we can expect an increase in the difference between the two solutions.

Referring to Fig. 36, we see that for ~ = 20°, the footing

has displaced almost half a foot by the time the numerical limit load

has been reached. The corresponding deformed surface profile at the

numerical limit load is shown in Fig. 38. In Fig. 38(a) the surface

profile is drawn to scale while in Fig. 38(b) it is not. If the small

and large deformation solutions differ significantly we would expect

the deformed geometry and initial geometry of the soil stratum to differ

also significantly. Figure 38 clearly·- shows this to be the case. We

can also see from Fig. 38 that soil deformation must be severe near the

footing corner. In Fig. 38(b) we show a deformed surface profile for

both small and large deformation solutions. There is a noticeable

difference between the two profiles corresponding to similar load

levels. The footing displacement determined from the large deformation

analysis is less than that determined from the small deformation analy­

sis. This is consistent with the load-displacement curves shown in

Fig. 36 where the large deformation solution is stiffer than the small

deformation solution.
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an elastic body.

In the remainder of this section we consider in some detail

the behavior of a soil with a friction angle of 20 degrees and a

cohesive strength of 500 psf. In Figs. 39 through 41 we show stress

distributions at various load levels as obtained from a small deforma-

twn analysi~ and in Figs. 42 and 43 stress distributions from large

and small deformation analyses are compared. None of these stress

distributions include the initial overburden stresses.

Stress Distributions

Referring to Figs. 39 through 41, at a load of 1140 psf some

yielding has occurred near the footing corner but most of the .soil

'stratum is still elastic. At q = 4030 psf significant yielding has

occurred and q '- 9620 corresponds to the numerical limit load. Con-

sidering first the contact stress at the soil-footing interface (Fig.

39), the stress distributions at q = 1140 psf are essentially that of

The vertical stress component, cr , at the footing
y

corner is about three times that at the footing center. As the load

increases and yielding spreads, the horizontal ~nd vertical stress

distributions tend to become flatter. At the numerical limit load

the vertical stress, cr , at the corner is only about 30 percent greater
y

than that at the footing center. As would be expected the shearing

stress, ~ ,has completely changed direction by the time the numerical
xy

limit load has been reached.

The shearing stress distribution at the limit load is nearly

linear up to a peak value of about 1700 psf, after which it falls off

sharply. If we define the maximum value of the mobilized friction
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angle between the footing base and adjacent soil to be

o
m

T - C-l( max \tan \ i\ q ;'
o

(127)

where T is the maximum value of the contact shearing stress, then
max

for friction angles of 10, 20 and 30 degrees, 0 = 2°, 7° and 11°m .

respectively. Thus for the material parameters studied here, a

friction angle between footing base and soil of 11 degrees is sufficient

to produce an essentially perfectly rough condition. This is consistent

with the results of Chen and Davidson (12).

In Figs. 40 and 41 horizontal and vertical stress distribu-

tions along vertical lines beneath the footing center and corner are

shown. As the load increases and yielding spreads, the distributions

change somewhat, particularly near the footing. There is a noticeable

change in the shearing stress distribution beneath the footing corner

as the load increases.

Stress distributions at the numerical limit load are shown

in Figs. 42 and 43 for small and large deformation analyses. Referring

first to the contact stresses shown in Fig. 42, vertical and horizontal

stresses differ only near the footing corner~ although the shearing

~tresses differ all along the footing. As can be seen in Fig. 43,

stresses beneath the footing corner differ only near the footing.

At a depth of 3 to 4 ft. beneath the footing, the large and small

deformation stresses are essentially the same.

-90-



Yield Zones

In Fig. 44 zones of yieldlng for various load levels are

presented. Theoretically some yielding should occur near the footing

corner for any load level since the true solution contains a singu-

larity at the corner. In the finite element solution yielding occurred

in the first increment of loading (q ~ 1140 psf) and a small yield zone

near the footing corner can be seen in Fig. 44. As the load increases

yieiding spreads downward and toward the footing centerline. The

yield zone reaches the footing centerline at a load just below 3240

psf. The zone of yielding continues to spread outward from the footing

as the load increases. In addition yielding spreads upward toward

the footing until at a load of 6740 psf all of the soil immediately

below the footing is·yie1ded. At the numerical limit load (9620 psf)

a significant portion of the soil stratum has yielded.

In Fig. 45 we show the yield zone at the numerical limit load

f 30°.or c.p = The extent of yielding at the limit load is clearly in-

fluenced by the value of the friction angle c.p.As can be seen from

the figure, small and large deformation solutions give somewhat diff-

erent zones of yielding at similar load levels. The large deformation

analysis produces a smaller zone of yielding, and as partial explana-

tion for this we note that as the footing punches down into the clay,

an effective surcharge is created by the clay which now lies above the

footing base. This surcharge should increase the hydrostatic ~tress

component and thus increase the shear required to yield the soil.
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Velocity Fields

Finally in Fig. 46 we show the velocity field at the numerical

limit load for a friction angle of 20 degreeB. Superimposed on the

figure is the outline of the Prandtl velocity field which is only

strictly applicable to weightless soils. However for the particular

set of soil parameters used here, the actual velocity field and the

Prandtl field can be expected to be similar. It can be seen in Fig. 46

that the Prandtl field and the numerically determined field are indeed

similar. We can clearly identify a wedge beneath the footing which

moves downward with the footing. There is also an intermediate zone

in which the velocity vectors are essentially perpendicular to radial

lines eminating from the footing corner. The velocity magnitude can

also be seen to grow as the radial line rotates counterclockwise. A

fairly well defined third zone exists which appears to be moving

upward and out as a rigid body. This problem was also solved for a

weightless soil (all other material parameters unchanged) and the

velocity field determined at the limit load was virtually the same

as that shown in Fig. 46. The velocity field at a similar load level

and as determined from a large deformation analysis is shown in Fig. 47.

It is no surprise that there is a distinct difference between the

small and large deformation fields since the large deformation solution

has yet to reach a limiting load.

In Fig. 48 the velocity field, at the numerical load, for

a smooth footing bearing on a weightless C-~ soil is shown. The

outline of a Hill like velocity field is also shown in the figure.

The Hill velocity field has been described by Chen and Davidson (12)
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and is characterized by two wedges beneath the footing rather than one

as in the Prandtl mechanism. Each wedge makes an angle of 55 degrees

with respect to the footing base. As can be seen in Fig. 48, the

numerically determined velocity field does not exactly correspond to

the Hill field, nor does it correspond to the Prandtl field, although

it contains characteristics of both fields.

6.4 Elastic-Plastic Analysis of a Footing on a Stratum of Undrained Clay

We deal here with an elastic-plastic total stress analysis

of a saturated undrained clay. Presumably the load rate is such that

.the excess porewater pressure has no chance to dissipate, that is,

volumetric strain is almost zero throughout the analysis. The material

parameters utilized in this study are

E = lxlO5 and hl~ psf ~ = a

v = 0.48 Y 100 pcf

C = 1000 psf K = 1.0
0

With ~ = 0, the Drucker-Prager yield function reduces to a von Mises

function.

Only Young's modulus is varied here. Two values of the

ratio E/C are considered, namely 1000 and 100. This ratio in real

soils is expected to range from approximately 100 to 3000 with perhaps

1000 being a typical value (14). In the following we consider first

the case of a soil with a Young's modulus of lxl06 psf and present a

fairly detailed description of the soil response to the footing load.

Only limited data is presented later for the case of a soil with a

Young's modulus of lxl05 psf.
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Case 1 - E =: lxl06 psf

Load displacement curves obtained from small and large

deformation analyses are shown in Fig. 49 for a Young's modulus of

lxl06 psf. The curves are almost linear up to a load of 3600 psf.

After this point the curves bend over quite sharply and gradually

approach the numerical limit loads corresponding to small and large

deformation analyses. The two curves are seen to be essentially

identical. Thus for E/C = 1000, the small deformation solution is

valid for all load levels up to and including the limit load. The

exact limit load for this problem is 5140 psf and the numerical

limit load is 10 percent above this value.

Stress distributions for various load levels are shown in

Figs. 50 through 52. At 800 psf the soil stratum was essentially

elastic. Considerable yielding had occurred at q =3060 psf, and

q = 5520 psf corresponds to the numerical limit load. There is a

marked similarity in these curves and those obtained for a C-~ soil

(Figs. 39 through 41). It is of interest to note that the maximum

contact shearing stress at the limit load is equal to the cohesive

strength (1000 psf).

Zones of yielding for various load levels are shown in Fig.

53 .. Again yielding starts at the corner of the footing and spreads

downward and toward the footing centerline. At a load of about 3610

psf the yield· zone has just reached the footing centerline. At this

point the footing and an adjacent elastic wedge (which makes a 45

degree angle with the base) are separated by a band of yielded material
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from the remainder of the still elastic stratum. The spread of the

yield zone to the centerline is coincident with the sharp break in

the load displacement curve (Fig. 49). This kind of behavior is

similar to that noted for the notched tensile specimen (Chap. 5).

At the numerical limit load all of the soil directly beneath the

footing has yielded. At the limit load the zone of yielding in the

present case (~= 0) is considerably smaller than that of C-~ soils

(Figs. 44 and 45).

The corresponding velocity field at the numerical limit load

is shown in Fig. 54 along with the outline of the Prandtl velocity

field. The velocity field is denoted by the small arrows. The close

agreement between the two fields is evident. Outside of the Prandtl

field the velocity magnitudes are too small to appear in the figure.

In Fig. 55 we show the velocity field at the limit load for a smooth

footing bearing on the same material. The outline of the Hill velocity

field (55) is also superimposed on the figure. Although the numerical

velocity field is similar to the Hill fiel~ it can not be said to be

identical to the Hill field. The numerical field, in fact, appears

to be a combination of the Hill and Prandtl fields. Prager and Hodge

(55) have previously suggested a combination of the Hill and Prandtl

fields as a possible failure mode.

Case 2 - E = Ixl05 psf

Load displacement curves for the case of a clay with a

Young's modulus of Ixl05 psf are shown in Fig. 56. The shape of

the small deformation curve must, of course, be identical to that for
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6a Young's modulus of lxlO psf. The ratio, E/C, is 100 here and we

see from the figure that the small and large deformation analyses

produce somewhat different results. The large deformation curve stops

at a load of approximately 5600 psf. Although the analysis was

. continued beyond this point, the response became somewhat erratic.

A very curious velocity field was observed at 5600 psf and is shown

in Fig. 57. A wedge beneath the footing is moving downward with the

footing, and the soil adjacent to the wedge is being squeezed up and

to the right. Beyond this 'is a region resembling a radial shear zone,

and finally there is a rigid zone moving up and to the right.

In an attempt to obtain an improved solution, the problem

was recomputed using half of the original increment size. The revised

solution lay slightly above the original solution· and a maximum load

of about 5800 psf was obtained. At this point a solution for the linear

equations could not be obtained. The problem was also solved using

a reduced Poisson's ratio of 0.4 and again the solution behaved irre-

gularly at about 5800 psf. Thus in the context of the finite element

mesh and numerical integration scheme used here, the maximum footing

load is 5800 psf. It may be the case that the velocity field shown in

Fig. 57 corresponds to the actual failure mode for a clay with E/C =

100.

6.5 Some Comments on the Numerical Solutions

In this section we discuss the adequacy of the increment

size used in the various solutions, the accuracy of the soluti~ns with

respect to satisfaction of the discrete equilibrium equations, and
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finally element stresses are discussed.

Increment Size

When an incremental integration scheme is utilized, there

is always a question as to the adequacy of the increment size. Re­

ferring to Figs. 35, 36 and 37, it can be seen that about twice as

many increments were used for a friction angle of 10 degrees as were

used for friction angles of 20 and 30 degrees. In particula~ 48

increments were used for ~ = 10°. This problem was originally solved

using about half as many increments, however, near the small deforma­

tion limit load, the large deformation solution behaved somewhat

erratically. For this reason both the large and small deformation

curves were recomputed using a smaller increment size. The small

deformation curves were virtually the same for both increment sizes

with the smaller increment size giving a 1 percent reduction in the

numerical limit load. The large deformation curves were the same

except near the limit load where the smaller increment gave a smoother

response.

As further evidence of the adequacy of the increment sizes

used, the small deformation solution for ~ = 20° (Fig. 36), the large

deformation solution for ~ = 30° (Fig. 37), and the small deformation

undrained solution (Fig. 49) were all recomputed using half the ori­

ginal increment size. Although in all three cases the smaller incre­

ment size produced a smoother load displacement curve, damping the

oscillations mentioned previously, the two solutions were essentially

the same. We can thus conclude that any error in the solutions can·
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be ascribed to the finit~ element discretization rather than to the

integration scheme.

Accuracy of the Solutions

In each increment two sets of linear simultaneous equations

must be solved. As the footing load approaches the limit load we can

expect these simultaneous equations to become somewhat illposed since

at the limit load of the discretized body the tangent stiffness is

singular. We thus need some measure of the accuracy of the linear

equation solutions and herein two checks were used.

At the end of each increment the incremental displacements

are substituted back into the mid-increment equations and a residual

vector, R, is computed as follows,

[R} = (K] [V} - [p} (128)

Of course, for an exact solution the residual vector is identically

zero. For all the solutions presented here and for each increment

of those solutions, every residual vector component was less than

.005 lb.

After the last increment of every solutio~ overall equilibrium

of the soil stratum was checked, that is, all of the external farces

(including constraint forces) were summed. For all of the solutions

presented here both the vertical and horizontal components of this

sum were less·than .002 lb.
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Element Stresses

As discussed previously, stresses in constant strain triangles

often exhibit sharp jumps between adjacent elements. This tendency

appears to be even more pronounced in elastic-plastic solutions than

in elastic solutions. Stress jumps were found to be greatest in the

undrained analysis where element stresses oscillated between tension

and compression near the footing corner at the higher l~ads. It

should be noted however the nodal stresses were reasonably smooth

at all load levels.
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7. SUHHARY, CONCLUSIONS AND RECOHI'·'1ENDATIONS

7.1 Summary

We have discussed here two elastic-plastic soil models; the

perfectly plastic Drucker-Prager model and the isotropic strain

hardening model of Roscoe and Burland. An explicit incremental con­

stitutive matrix was presented for the Drucker-Prager model and an

indicial expression for the Roscoe-Burland constitutive tensor

(suitable for numerical analysis) was presented. We have also

presented a "mixed" incremental formulation of the large deformation

. problem. It was found that in order to render the associated finite

element equations symmetric, it was necessary to assume incremental

strains to be an order of magnitude smaller than incremental rotations.

In Chap. 4 we reviewed integration techniques suitable for elastic­

plastic analysis and discussed the mid-point integration rule.

A number of example problems were considered in Chap. 5,

including a shallow layer of undrained clay under uniform strip

loading and a notched tensile specimen. Finally in Chap. 6 total

stress and effective stress solutions for 50 ft. deep elastic-plastic

clay strata loaded by a rigid strip footing were presented, with

particular attention given to the ~ffect of large deformations on

the solutions.

7.2 Conclusions

Numerical Technigues

It was shown in Chap. 5 that for a given set of nodal points,
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the elastic-plastic solution is significantly influenced by the element

arrangement. Of the three arrangements considered, the division of

quadrilaterals into four triangles gave, as expected, the best results.

These conclusions are, of course, meaningful only for the constant

strain triangles used here.

It appears that a fairly fine finite element mesh is needed

to capture limit loads. However the finite element method is clearly

capable of predicting limit loads to within small tolerances as evi­

denced by the solutions for the shallow clay layer and the notched

tensile specimen. In the context of the Drucker-Prager model, it

'seems that the higher the friction angle, the finer the mesh must be

in order to determine limit loads to within a specified error. It

was also demonstrated in Chap. 6 that mesh 3 (Fig. 29) is fine enough

to capture the elastic solution for the 50 ft. stratum.

The numerical integration scheme utilized here was shown,

in Chaps. 5 and 6, to be relatively insensitive to increment size.

It was further indicated in Chap. 6 that the in6rement sizes used for

the 50 ft. stratum examples were adequate. It was demonstrated in

Chap.S that in the context of large displacement analysis, the

equilibrium correction technique is a powerful numerical tool. In

addition it was demonstrated that stress scaling ~l7ith equilibrium

correction is an efficient numerical technique in elastic-plastic

analysis.

Large Deformation vs. Small Deformation Analysis

For realistic values of effective stress parameters for
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overconsolidated clay, changes in geometry caused by deformation of

the soil is such as to affect the load-displacement response only

near the limit load. For reasonable values of undrained clay para­

meters (E/C = 1000), soil deformation has practically no effect on

the load-displacement response of a footing, even near the limit load.

In such a case, small deformation analysis neglecting the changes in

geometry is sufficient for an elastic-plastic analy~is. For the

.extreme value of E/C = 100, clay response is affected near the limit

load. For reasonable values of both drained overconsolidated para-

meters and undrained parameters, the small displacement limit load is

.a meaningful measure of the load at which footing displacements

become excessive.

Clearly for practical settlement calculations a ~mall defor­

mation analysis is sufficient for the total and effective stress

parameters considered here. Depending on the precision required, a

linear analysis may, in fact,. be Suitable for practical settlement

analysis. This is particularly true for undrained analysis where a

significant portion of the load settlement curve is nearly linear.

Deformation Modes at the Limit State

For some time there has been a question as to the true

velocity field at incipient collapse or plastic limit state for a

smooth punch bearing on a perfectly plastic, weightless von Mises

or Tresca material (plane strain). The results presented here

indicate that the actual field is a combination of both the Hill

and Prandtl velocity fields, a possibility suggested by Prager and
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Hodge (55). For a smooth punch bearing on an extended von Mises

(Drucker-Prager) weightless material, it was determined here that the

actual failure mode contains elements of both the Prandtl and Hill

velocity fields.

For both the von Mises and extended von Mises yield functions,

we have demonstrated that the Prandtl velocity field corresponds to

the actual mode of failure for a perfectly rough punch bearing on a

weightless material.

7.3 Recommendations for Future Work

It is recommended that the analyses presented here be extended

to subsurface footings •. Furthermore, the effective stress analyses

of normally consolidated clay strata and the analyses of sand strata

constitute a natural extension of the work presented here. Although

the Drucker-Prager model with k = 0 is directly applicable to these

soils, some preliminary analyses by the author yielded very poor

results. It may well be that finer finite element meshes and a

different numerical integration scheme are re~uired for such materials.

Although some analyses using Cambridge type strain hardening

models (64) have been briefly reported in the literature (71)(82)(83),

it is felt that more extensive studies using these models could be·

extremely interesting.

Since strain softening is characteristic of many natural

soils, analyses using strain softening stress-strain models \vould be

. extremely enlightening. In particular the effect of strain softening
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on the maximum load should be investigated. Th is kind of Hark is

particularly necessary for sensitive clays Vlhich exhibit dramatic

softening. Hoeg (34) and Zienkiewicz and Nayak (81) have done some

preliminary work in this area.
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Table 1 Elastic Contact Stresses Beneath Rough Rigid Footing

q = 10,000 pSf, \) = .3

I
Distance (J (psf) (J (psf)

from x y
--

Centerline Ha1fspace Finite Ha lfspace Finite
ft. (Exact) Element (Exact) Element

0 2,850 2,820 6,640 6,330

.5 2,900 2,910 6,780 6,520

1.0 3,100 3,140 7,230 6,980

1.4 3,410 3,510 7,960 7,710
,

1.8 4,040 4,120 9,430 9,000

2.1 5,110 5,220 11,930 11,200

2.3 6,950 6,220 16,210 14,650

2.5 --- 13,380 --- 18,660
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Table 2 Elastic Stress Distribution Below Centerline of Rough Rigid

Footing, q = 1O,000psf, \) = .3

~ ._~

Distance cr (psf) cr (psf)
Below x y

Footing Halfspace Finite Halfspace Finite
ft. (Exact) Element (Exact) Element

0 2850 2820 6640 6330

1.03 3040 2630 6400 6360

2.50 1640 1380 6130 6030

3.90 , 795 491 5380 5260

5.60 362 140 4440 4400

7.80 . 158 -36 3510 3490

10.70 67 -102 2710 2630

14.8 27 -68 2030 2060

20.8 10 -51 1480 1520

29.2 4 30 1070 1130

37.4 2 III 837 925

50.0 1 270 629 825
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Table 3 Elastic Stress Distribution Belo\\T Corner of Rough Rigid

Footing, q = 10,000 psf, v = .3

-_.+

Distance (J (psf) (J (psf)
Be1mv x y

Footing Ha1fspace Finite Ha1fspace Finit e
fto (Exact) Element (Exact) Element

a --- 13,380 --- 18,660

.2 7480 6770 17,180 17,350

.4 4730 4250 12,340 12,650

.7 3310 2940 9,460 9,470

1.1 2570 2200 7,650 7,750

1.5 2100 1770 6,640 6,610

2.0 1760 1440 5,840 5,790

2.7 1430 ll20 5,160 5, llO

3.6 llOO 816 4,570 4,520

4.7 787 521 4,050 3,990

6.2 505 286 3,520 3,480

8.1 304 92 3,020 2,960

11.0 152 -8 2,450 2,420

15.0 69 -37 1,910 1,950
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Table 4 Elastic Contact Stresses Beneath Rough Rigid Footing

q = 10,000 psf

Distance (J (psf) (J (psf)
From x y

Centerline Ha1fspace Ha1fspace Finite Halfspace Ha1fspace Finite
ft. (Exact) (Exact) Element (Exact) (Exact) Element

'V = .5 'V = .48 'V "" .48 'V = .5 'V = .48 'V'= .48

0 6,370 5,880 5,580 6,370 6,370 6,280

.5 6,500 6,000 5,840 6,500 6,500 6,600

1.0 6,950 6,420 6,370 6,950 6,950 7,040

1.4 7,680 7,100 7,030 7,680 7,690 7,740

1.8 9,170 8,470 8,220 9~170 9,180 8,990

2.1 11,730 10,830 9,780 11,730 11,740 10,990

2.3 16,240 14,990 13,180 16,240 16,240 14,700

2.5 --- --- 14,720 --- --- 21,670
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Table 5 Elastic Stress Distribution Beneath Corner of Rough Rigid

Footing, q = 10,000 psf

Distance (J (psf) 0- (psf)
Below x y

Footing Ha1fspace Halfspace Finite Ha1fspace Halfspace Finite
ft. (Exact) (Exact) Element (Exact) (Exact) Element

\) = .5 \) = .48 \) = .48 \) = .5 \) = .48 \) = .48

0 --- --- 14,720 --- --- 21,670

.2 5,950 6,130 6,260 17,000 17,220 18,650

.4 4,400 4,430 4,610 12, no 12,240 13,170

.7 3,510 3,480 3,420 9,260 9,340 9,570

1.1 2,930 2,870 2,870 7,520 7,570· 7,810

1.5 2,560 2,490 2,420 6,570 6,590 6,670

2.0 2,200 2,140 2,030 5,830 5,840 5,860

2.7 1,800 1,750 1,660 5,210 5,210 5,190

3.6 1,370 1,330 1,280 4,670 4,660 4,630

4.7 960 937 894 4,180 4,170 4, no
6.2 600 587 576 3,660 3,640 3,580

8.1 351 345 384 3,140 3,120 3,070

11.0 171 168 266 2,530 2,520 2,500

15.0 76 75 219 1,960 1,960 1,990
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APPENDIX I - DERIVATION OF THE ~ MATRIX

As a demonstration of how the ~ matrix can be derived,

we show that to the first order,

(Al.l)

We begin by considering yet another description of the stress state

in the subsequent configuration. Referring to Fig. 13 we consider

an infinitesimal element which in the initial configuration is square

and ~.;rhose sides are parallel to the global coordinate system. In

the subsequent configuration, the square has been rotated w radians

(to the first order) and has been deformed into a parallelogram (Fig.

58) where to the first order,

(Al.2)

Associated with the deformed element is a set of locally

convected base vectors labeled 1 and 2 in Fig. 58. Stress components

T .. are referred to this locally convected system and define force
1J

per unit of area in the subsequent configuration. Reducing Novozhilov's

(49) three-dimensional equations to the plane strain case, we have,

(1 + 2 €22\1/2
S11 = Tn1 + 2 ell)

(~
+ 2 €11)1/2

822 = T22+ 2 €n

8
12 = T

12

(AI. 3)

JAl.4)

(AI. 5)

Referring to Figs. 14 and 58, we note the following transformation
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TIl COS
2 'n + T 22 sin2 1) - T 12 sin21)

TIl:=; cos2 1) - s in2 1) (Al.6)

Taking a Taylor expansion in 1) about zero and retaining only linear

terms, Eq. AI.6 reduces to

Substituting Eq. AI.7 into Eq. AI.3 we have

1 + 2 €22\1/2
Sll = (1 + 2· ) [tll - 2 T12 1)J

€1l

(AI. 7)

(AI. 8)

A linear Taylor expansion of Eq. Al.8 with respect to €ll and €22

yields

or, for a first order approximation,

Substituting Eqs. 71 and 76 into Eq. Al.10 we have,

(AI. 9)

(AI. 10)

Finally, eliminating terms which are nonlinear with respect to the

incremental variables, we have
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APPENDIX II - CONSTANT STRAIN TRIANGLE MATRICES

We refer the reader to Ref. 79 for a detailed discussion of

the constant strain triangle. Referring to Fig. 59, we write a linear

displacement expansion over the element,

[N] [v} (A2.l)

where u
l

and u
2

are the X and Y displacements respectively at a generic

point in the element, and tv} is a vector of element nodal displace-

ments,

un
U2l

fv}
u12 (A2.2)= u

22
u

13
u

23

where, for example, u
13

is the X displacement component of node 3. Also,

[:1 0 t
2

0 t
3

:3J[N] = (A2.3)
t

l
0 t

2
0

where t l , t
2

and t
3

are the so-called area coordinates of the triangle

(79), that is,

t
1

(A2.4)
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and a l = X Y - X
3

Y2 (A2.7)2 3

hI = Y - Y
3

(A2.8)2

C = X - X2 (A2.9)1 3

aZ = X
3 Yl - Xl Y3

(AZ.IO)

bZ = Y3 - Yl (AZ.11)

C = X - X
3 (AZ.1Z)Z 1

a3 = Xl YZ - Xz Y1
(AZ .13)

h = Y - YZ (AZ.14)3 1

C = X - Xl (A2.15).3 Z

In addition, the area of the triangle is denoted by A.

Finally, we define matrices [B] and ['B'],

b1 0 bZ 0 b
3

0

[B]
1

0 0 0 (AZ.16)=- c1 Cz c
32A

c l h1 Cz hZ c
3 b3

b
1 0 hZ 0 b

3 0

1 0 c1 0 Cz 0 C
3[In =-2A

C1 b1 Cz h2 c 3 b.3

-c /2 b/2 -c /2 h/2 -c /2 b/21 2 3

(A2.17)
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APPENDIX III - THE CONPUTER PROGRAl'1

All of the solutions presented here were generated by a

FORTRAN IV computer program designed and coded by the author. The

program was compiled and executed on Lehigh University's CDC 6400

computer, SCOPE 3.4, using the FTN compiler.

The program is capable of solving, numerically, elastic­

perfectly plastic, large deformation boundary value problems (plane

strain)._ In particular the program incorporates the Drucker-Prager

model which contains the von Mises model as a special case. It can,

of course, also solve linear elastic, elastic large deformation and

elastic-plastic small deformation problems. The current version of

the program was designed specifically to handle boundary conditions

peculiar to punch problems where forces or displacements can be pre­

scribed beneath the punch. Simple modifications must be made in order

to treat more general boundary conditions and load conditions.

The input consists essentially of mesh data, increment data

and material property data. All mesh data must be read in since the

program contains no algorithms for automatic mesh generation. The

number of increments and the size of each increment (force or displace­

ment) must also be read in since the program does not have the cap·a­

bility of making decisions concerning increment size.

The output at the end of each increment consists of:

1) total nodal displacements,

2) incremental nodal displacements,
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3) residual vector,

4) total element stresses, and

5) the yield condition of each element.

At the end of every third increment nodal stresses are printed.

Element stiffness matrices and the global stiffness matrix

are generated in a single pass through all of the elements. At any

one-time, element data and a partial global stiffness matrixcorres­

-ponding to 25 quadrilateral elements (100 triangular elements) are

stored in central memory. Thus, reading and writing of scratch tapes

are required, but the program can be compiled in 70,000 octal words

(28,672 decimal).

Only the lower banded half of the symmetric global stiffness

matrix is generated and stored. In the linear equation solution

subroutine, this entire matrix is contained in core. Thus although

there is no limit on the number of elements that can be handled, the

banded half stiffness matrix must contain less than 15,000 elements

(decimal). For example, if a mesh contained 250 nodes, the half

band width must be less than 15 nodes.

For mesh 3 (Fig. 29) with quadrilaterals defined by four

constant strain triangles, the nonlinear solutions required about 13

seconds of central processing time per increment and 12 seconds of

peripheral processing time per increment. Thus a typical nonlinear

analysis which required, say, 30 increments would cost about 60

dollars and take about 400 and 360 seconds of CP and PP time respec­

tively.
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APPENDIX IV - NOTATIONS

defined by Eqs. AZ. 7 - AZ. 15

A - area of triangle

[A] = initial stress matrix

B defined by Eq. 20

[B] = matrix relating element strain to element nodal displacements

[ "'B] = matrix relating element strain and rotation to nodal dis-

placements

C = cohesive strength

[D] = elastic-plastic constitutive matrix

e = void ratio
v

= strain vector

= augmented strain vector

= Young's modulus

yield function

body force vector

= shear modulus

F.
~

f

e. . = infinitesimal strain tensor
~J

[e}

fe}

E

G

.H

HI ,Hz,}
H

3
,H4

J 2

k

defined Eq. 58

= defined by Eq. 26

= second invariant of the deviatoric stress tensor

material constant of Drucker-Prager yield function

.. [K] = element tangent stiffness in Chap. 3; global tangent
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stiffness in Chap. 4

[Ke] element geometric stiffness

[K ] element material stiffness
m

t length used in example problem shown in Fig. 19
o

t
1
,t

Z
,t

3
~ area coordinates of a triangle

"L ~ length of cantilever beam in Chap. 5; defined by Eq. 55

in Chap. 2

M = material constant of modified "Cam":clay

[N] coordinate function matrix associated with constant

strain triangle

,p ~ hydrostatic stress component

Po = strain hardening parameter

[p} element load vector in Chap. 3; global load vector in

Chap. 4

q ~ average vertical stress beneath footing

qo ~ average vertical stress beneath footing at limit state

R defined by Eq. 56

fR} ~ residual vector

s = surface area

s.. deviatoric stress tensor
q

S. . = Kirchhoff stress tensor
1J

t time like parameter

T. ~ traction vector
1

u. ~ incremental displacement vector
1

u ll ,u21 , nodal displacements of a generic finite element
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fU}

f. v}

fv}

x.
~

X,Y,Z

two-dirnensional incremental displacement vector

vector of element nodal displacements

displacement vector of discretized body

= cartesian coordinates

global coordinates

= material constant of Drucker-Prager yield function

= instantaneous elastic shear modulus associated with

modified Cam-clay

y = weight density

Yxy engineering shearing strain

o = denotes a virtual quantity

0.. = Kronecker delta
~J

o = maximum mobilized friction angle beneath footing
m

~ end displacement of cantilever beam'

e. . = Green's strain tensor
~J

~ material constant of modified Cam-clay in Chap. 2 and

an angle in Appendix I

= constant relating plastic strain vector and normal to

yield surface

A = material constant of modified Cam-clay

v = Poisson's ratio

S. . = cartesian coordinates
~.

p = mass density

cr = appli~d stress

cr yield stress is simple tension
o

cr.. = Cartesian stress tensor
~J
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T ••
lJ

T .•
lJ

ill. .
lJ

principal stresses

locally rotated stress tensor

- stress tensor associated with convected coordinates

= soil friction angle

defined by Eqs. 60 and 61

matrix relating Kirchhoff stress tensor and T ..
lJ

infinitesimal rotation tensor
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