5,466 research outputs found

    Study of advanced fuel system concepts for commercial aircraft and engines

    Get PDF
    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term

    Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    Get PDF
    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards

    Spin-glass state of vortices in YBa2Cu3Oy and La2-xSrxCuO4 below the metal-to-insulator crossover

    Full text link
    Highly disordered magnetism confined to individual weakly interacting vortices is detected by muon spin rotation in two different families of high-transition-temperature superconductors, but only in samples on the low-doping side of the low-temperature normal state metal-to-insulator crossover (MIC). The results support an extended quantum phase transition (QPT) theory of competing magnetic and superconducting orders that incorporates the coupling between CuO2 planes. Contrary to what has been inferred from previous experiments, the static magnetism that coexists with superconductivity near the field-induced QPT is not ordered. Our findings unravel the mystery of the MIC and establish that the normal state of high-temperature superconductors is ubiquitously governed by a magnetic quantum critical point in the superconducting phase.Comment: 9 pages, 9 figure

    Hole doping dependences of the magnetic penetration depth and vortex core size in YBa2Cu3Oy: Evidence for stripe correlations near 1/8 hole doping

    Full text link
    We report on muon spin rotation measurements of the internal magnetic field distribution n(B) in the vortex solid phase of YBa2Cu3Oy (YBCO) single crystals, from which we have simultaneously determined the hole doping dependences of the in-plane Ginzburg-Landau (GL) length scales in the underdoped regime. We find that Tc has a sublinear dependence on 1/lambda_{ab}^2, where lambda_{ab} is the in-plane magnetic penetration depth in the extrapolated limits T -> 0 and H -> 0. The power coefficient of the sublinear dependence is close to that determined in severely underdoped YBCO thin films, indicating that the same relationship between Tc and the superfluid density is maintained throughout the underdoped regime. The in-plane GL coherence length (vortex core size) is found to increase with decreasing hole doping concentration, and exhibit a field dependence that is explained by proximity-induced superconductivity on the CuO chains. Both the magnetic penetration depth and the vortex core size are enhanced near 1/8 hole doping, supporting the belief by some that stripe correlations are a universal property of high-Tc cuprates.Comment: 12 pages, 13 figure

    Thermodynamically consistent equilibrium properties of normal-liquid Helium-3

    Full text link
    The high-precision data for the specific heat C_{V}(T,V) of normal-liquid Helium-3 obtained by Greywall, taken together with the molar volume V(T_0,P) at one temperature T_0, are shown to contain the complete thermodynamic information about this phase in zero magnetic field. This enables us to calculate the T and P dependence of all equilibrium properties of normal-liquid Helium-3 in a thermodynamically consistent way for a wide range of parameters. The results for the entropy S(T,P), specific heat at constant pressure C_P(T,P), molar volume V(T,P), compressibility kappa(T,P), and thermal expansion coefficient alpha(T,P) are collected in the form of figures and tables. This provides the first complete set of thermodynamically consistent values of the equilibrium quantities of normal-liquid Helium-3. We find, for example, that alpha(T,P) has a surprisingly intricate pressure dependence at low temperatures, and that the curves alpha(T,P) vs T do not cross at one single temperature for all pressures, in contrast to the curves presented in the comprehensive survey of helium by Wilks. Corrected in cond-mat/9906222v3: The sign of the coefficient d_0 was misprinted in Table I of cond-mat/9906222v1 and v2. It now correctly reads d_0=-7.1613436. All results in the paper were obtained with the correct value of d_0. (We would like to thank for E. Collin, H. Godfrin, and Y. Bunkov for finding this misprint.)Comment: 19 pages, 19 figures, 9 tables; published version; note added in proof; v3: misprint correcte

    Longitudinal muon spin relaxation in high purity aluminum and silver

    Full text link
    The time dependence of muon spin relaxation has been measured in high purity aluminum and silver samples in a longitudinal 2 T magnetic field at room temperature, using time-differential \musr. For times greater than 10 ns, the shape fits well to a single exponential with relaxation rates of \lambda_{\textrm{Al}} = 1.3 \pm 0.2\,(\textrm{stat.}) \pm 0.3\,(\textrm{syst.})\,\pms and \lambda_{\textrm{Ag}} = 1.0 \pm 0.2\,(\textrm{stat.}) \pm 0.2\,(\textrm{syst.})\,\pms

    Dynamics of liquid 4He in Vycor

    Full text link
    We have measured the dynamic structure factor of liquid 4He in Vycor using neutron inelastic scattering. Well-defined phonon-roton (p-r) excitations are observed in the superfluid phase for all wave vectors 0.3 < Q < 2.15. The p-r energies and lifetimes at low temperature (T = 0.5 K) and their temperature dependence are the same as in bulk liquid 4He. However, the weight of the single p-r component does not scale with the superfluid fraction (SF) as it does in the bulk. In particular, we observe a p-r excitation between T_c = 1.952 K, where SF = 0, and T_(lambda)=2.172 K of the bulk. This suggests, if the p-r excitation intensity scales with the Bose condensate, that there is a separation of the Bose-Einstein condensation temperature and the superfluid transition temperature T_c of 4He in Vycor. We also observe a two-dimensional layer mode near the roton wave vector. Its dispersion is consistent with specific heat and SF measurements and with layer modes observed on graphite surfaces.Comment: 3 pages, 4 figure
    corecore