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FOREWORD
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STUDY OF ADVANCED FUEL SYSTEM CONCEPTS FOR

COMMERCIAL AIRCRAFT AND ENGINES

E. F. Versaw, G. D. Brewer, W. D. Byers,

H. W. Fogg, D. E. Hanks, J. Chirivella

Lockheed-Ca]ifornla Company

Burbank, California 91520

SUMMARY

The specificatio_ for Jet A, the fuel currently used world,wide by commercial Jet

aircraft, ASTM D 1655-81, has evolved over a period of years. It represents a good

mstch between cost of producing it from high quality crudes which have been readily
available up to the recent past, and meeting the requirements for high performance
aircraft and engines with minimum maintenance.

20

Since the oll embargo of 1973-74, it has become apparent that high quality crude

may not be readily available in the foreseeable future. This situation will stem

from two factors; the decllning quantity of a finite resource, and the fact that a
significant percentage of the world's crude oll is controlled by a politically

unstable cartel. Accordingly, it is to be expected that increasing quantities of the

Jet A of the future will be produced from crude of lesser quality, or from a
synthetic crude derived from coal, shale, or tar sands. The question thus arises,
should the present specification for Jet A be modified to relax certain of the

properties in order to increase the yield, decrease the cost, and _knlmlze the energy
required to refine either the present or future grade crudes? i

The subject .,tudywas undertaken to address this question insofar as it pertains

to the effect s_ch changes might have on the airframe and engine fuel system of a

typical modern commercial Jet transport. Specifically, the objectives of the study
were to:

i"

• Identify credible values for specific properties of Jet fuel which can

be considered realistic candidates for relaxation from the present
specification,

$ evolve advanced fuel system designs which will permit use of the relaxed
property fuels,

• evaluate the performance of the candidate advanced fuel systems and the
relaxed property fuels in a typical transport aircraft.

The following table lists values of the propertles of Jet fuel selected to

represent relaxation considered feasible and realistic in the sense that they would

i simplify refining requirements from both present and probable future grades of crude
o£I. For comparison, values of these properties as presently required by
specification ASTM D 1655-81 are also shown.

>

1

1985010866-010



ASTM Candidate Relaxed

Fu_el Property Specification Property Value

Freeze Point, min, °C (°F) -40 (-40) -20 (-4)

Thermal Stability, max, °C (°F) 260 (500) 204 (400)

(JFTOT Breakpoint Temp.)

Viscosity, min, mm2/s (cSt)

at -23.3°C (-lO°F) 12 (12) --

at -17.8°C (O°F) -- 15 (15)

Aromatic Content, % by Vol. 20 - 25 35 ,

Lubricity, WSD, mm -- 0.45

The L-1011-500 TriStar commercial transport was used as a basis for study of

design concepts for the airframe and engine fuel systems which could accommodate

fuels with the relaxed properties. It was found that the unmodified baseline

aircraft would be unable to use a fuel with the suggested high freeze point in

commprcla] service. For example, fuel would freeze in the wing tanks on a long range

flight at normal cruise altitudes. Also, on a -49°C day (the cold day environment

accepted for this study), an aircraft which is forced to remain on the ground for a

lengthy period after being fueled could find a significant fraction of its fuel load

unpumpable. Some form of thermal protection or heat addition will be necessary. ._

Similarly, an unmodified aircraft would be unable to use a fuel with the postulated

low thermal stability on either standard or high temperature days. A method of

cooling the fuel in critical engine fuel system components is required.
r

Suggested ranges for relaxation of the other fuel properties, i.e , viscosity,

aromatic content, and lubricity, do not require changes which would be reflected to

any significant degree in modifications of either aircraft weight or specific fuel

: consumption; therefore, aircraft performance would not be affected• Increased

viscosity would affect the pumping power required. It would have negligible affect

on engine power. Higher aromatic content would require modification of some seals

and gaskets to use materials better able to resist softening or swelling; such

material substitutions are readily available. The selected lubricity specification

' _ould not require any change in fuel system design; corrosion inhlbitors currently

used In Jet A fuel would provide acceptable lubriclty characteristics.

To accommodate the specified higher freeze point and lower thermal stability

property changes, severa_ designs were studied, from which three preferred candidate

fuel system concepts were envolved. System A uses electrical heating elements

applied to the lower surfaces of the aircraft fuel tanks to keep the high freeze

point fuel from freezing. It also has provision for supplying warm bleed air to heat

" fuel lines and critical components of the fuel system of each engine and the

auxiliary power unit which may be subject to freeze-up, e.g., when these units are

shut down in flight. To accommodate a fuel with low thermal stability, peak

temperatures in the engine fuel system are reduced to levels which are compatible

with a JFTOT rating of 204°C by u_Ing fan air, tanked fuel. a,,d,lor fuel being pumped

to the engine as heat sinks for engine oil cooling, and by usin_ a variable

displacement pump to reduce the high pressure pump heat reJ_=rlon.

7, 2
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4 Candidate Systems B and C incorporate all of these features from System A and, in

addition, make use of insulation in various areas of the fuel tanks to decrease heat

loss and minimize the requirement for adding heat to prevent fuel freeze-up. System

B has 3.175 mm (0.125 in) thick insulation on the lower surfaces, including

stringers, in all wing tanks. System C has the same type Ins_latlon on the upper
surfaces of the outboard tanks, in addition to the lower surfaces of all tanks. In

both systems, 'he he_ting elements are applied on the fuel side of the insulation

layer on the bottom of the tanks. No heating elements are used over the insulation
on the upper outboard tank surfaces in System C. The insulation suggested is

polysulflde filled to 50 percent by volume with hollow borosillcate glass spheres

which average approximately 80 microns diameter.

For fuel costs near present values, i.e., approximately $1.O0/gal., System A was

found to provide the lowest direct operating cost. However, with o_ly a 27 percent

increase In fuel cost, System B achieves parity in DOC and thereafter, as fuel costs
continue to increase, System B would show increasing cost advantage. System B is

therefore recommended as the most attractive fuel system candidate for the long term

if changes such as those herein postulated are made to the Jet fuel Jpeclflcatlon.

It is emphasized that there are no current plans in the industry to implement

_- changes in _he fuel specification, This preliminary study was conducted to explore

potential technology requirements and performance trade-offs in the _vent future
considerations indicate such relaxation is necessary. Much more work is needed, both

experimental and analytical, before firm conclusions can be reached and final
rcco-__endations made.

SYMBOLS AND ABBREVIATIONS

4

A ampere

. a, abs absolute

A/C, Ac aircraft

acc accelerate

ADV advanced
I

' API American Petroleum Institute

APU auxiliary power unit

ASTM American Society for Testing and Materials

BOOM Ball-On-Cylinder Machine

Btu British thermal unit
p

C cenLi

C specific heat

"C Celsius

CAL calorie
p _

,_ C_C Coordinating Research Councll

ca, caT, cSt centlstokes
n

3
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SYMBOLS AND ABBREVIATIONS

D diameter

dc direct current

decc decelerate

deg degree

DOC direct operating cost

E actlvatlon energy

e.g. for example

eng. engine

ERBS Experimental Referee Broad-Speclflcatlon

°F Fahcenheit

FAA Federal Aviation Administration

FCOC fuel-cooled oil cooler

fpm feet per minute

FSED full scale engineering development

ft feet

g gram or gauge

gat gallon (U.S.)

GCIdS gas chromatography - mass spectrometry

, gen. generator

h hour or film heat transfer coefficient

HE high energy

Hg mercury

HP high pressure or horsepower
P

hr hour

i.e. that is

in. inch

IP intermediate pressure

ISA international standazd atmosphere

J Joule

Jet A, A-l, B Designation for Commercial Aviation Jet Fuel_

JFTOT Jet Fuel Thermal Oxidation Tes.er

JF-4 Designation for a Military Aviation Jet Fuel

4
,o
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SYMBOLS AND ABBREVIATIONS

K kelvin

k kilo or thermal conductivity

KCAS knots calibrated airspeed

kt knot

kVA kilo volt-amperes

L, ] liter, length

Ib pound

ibm pound m_ss

LP low pressure
l

M Mach number or mega

m meter or milli

max maximum

mln minute or minimum

mol mole

N Newton

NASA National Aeronautics and Space Administration

n.ml. nautical mlle

NMR nuclear magnetic r,_onance

No. number

Nu Nu&selt number

OEW operating empty weight

P pressure

p plco

Pa pascal

Pr Prandtl number

psi pounds per square inch

Qobs percent swell of a polymeric elastomer in a solvent

R-C reslstor-capacitor

Ref. reference

RFP Request for Proposal

Rn Reynolds number

rpm revolutions per minute

5
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SYMBOLS AND ABBREVIATIONS

S Sieman

s second

sec second

k SFC specific fuel consumption

SL, S.L. sea level

SmCo Samarium CcbaJt

SMD Sauter mean diameter

sp gr specific gravity

Std standard

sys, syst system

SW switch

T temperature

TDR tube deposit rating

temp temperature

TOGW takeoff gross weight

U.S. United States

V velocity or volt i

visc viscosity

Vol, vol volume

vs. versusI"

W weight, weight flow rate or watt

W/O without

WSD Wear Scar Diameter

" wt weight

_r year

6
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SYMBOLS AND ABBREVIATIONS

SUBSCRIPTS

Related To Fluid Flow

aw adiabatic wall

f fuel

H hydraulic

o stagnation

p pressure

Related to Solubillt 7

o solvent

p polymer

GREEK SYMBOLS i

A difference (used as a prefix)

6 ratio of static pressure to sea level _tatlc pressure

or solubility parameter

micro or absolute viscosity

v kinematic viscosity

_, P density

o surface tension

ohm

9.......................
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I. INTRODUCTION

This is the fln=] report describing a study conducted by the Lockheed-California

Company for the NASA-Lewis Research Center to assess the impact on a commercial Jet

transport aircraft of using fuels which have relaxed property limits, relative to the

current commercial jet fuel. This study is part of an overall program being conduc-

ted by NASA to provide the technological date base needed in the event it becomes

necessary to make changes in aviation fuel properties.

The fuel currently used by the commercial aviation industry is derived from high

quality crude oil. It meets _ specification developed Jointly by the engine manu-

; faccrers and the fuel producers following many years of laboratory research and

operational experience. The resulting fuel has contributed importantly to the

outstanding record of performance amd operational characteristics of commercial

transport aircraft. Until the oil embargo of 1973-74 the crude oils from which these

_uels were refined were readily available throughout the world, at reasonable cost.

This is no longer true, however, inasmuch as costs have increased tremendously and

there is a declining quantity of high quality crude available on the market. The

producers of Jet fuels will increasingly be forced to consider the use of lower

quality crudes as well as synthetic crudes obtained from coal, shale, and tar sands.

The _roblem in doing this is that it requires costly changes to be made in the

refining process in order to produce a Jet fuel which meets the current specifica-

tion. One means of minimizing this increased cost is to relax certain of the

required fuel properties. If this can be accomplished it can also increase the yield

of jet fuel obtainable from the existing high quality crudes. The question is, which

fuel properties can be relaxed without compromising the performance and operational

characteristics of the engine, or the safety of the aircraft, recognizing that the

recent decline in availability of high quality crudes has already resulted in a

reduction of the margins which had previously existed between delivered and

specification fuel properties.

The objectives of the study were: to identify credible values for specific

properties of Jet fuel which could be considered realistic candidates for relaxation,

to evolve advanced fuel system designs for commercial aircraft and ergines which

would permit use of the relaxed property fuels, and to compare the performance of a

¢ modern commercial transport aircraft using these advanced fuel systems and the

_ relaxed fuel property limits with that of the baseline aircraft using current speci-
fication fuel. The study was limited to any system, subsystem, or component that is

involved in the containment, delivery, or control of the fuel to the engine comb-

ustor. It thus was limited to delivery through the combustor fuel injection nozzles

and did not include the combustion process itself.

The methodology of the study is outlined in Section 2, Technical Approach. Data

used as input are identified in Section 3. Fuel properties are discussed in Section

4, which includes a listing of the property limits selected for relaxation. Section

5 presents an analysis of the effect the specified relaxation of fuel properties

would have on the baseline aircraft, and Section 6 describes advanced fuel system

component designs which will permit the satisfactory use of fuel with the candidate

* relaxed properties in the subject aircraft. Section 7 then provides a description

_ and the results of an evaluation of candidate fuel system concepts which were evolved
• _ to accommodate a hypothetical fuel combining the relaxed properties in the reference

aircraft. Based on results of this analysis, recommendations are presented in
Section 8.

-
_" _ .... -.................... _ . j_,_ll-.-11_av--_ _ _ ,,___
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2. TECHNICAL APPROACH

The technical approach followed in this analytical study was predicated upon

satisfying a set of guidelines and requirements established early in the program.

These guidelines and requirements, together with the overall approach used in

performing the analysis, are outlined in the following paragraphs.

2.1 Guidelines and Requirements

Reference Aircraft - The L-1011-500 commercial transport aircraft was selected to

serve as the baseline vehicle for evaluating candidate advanced fuel system concepts

in connection with the use of potential relaxed property fuels.

Flight Requirements - Evaluate aircraft performance in each of the following
flight durations:

• Short range, duration ! 2 hours.

Use 926 km (500 n.mi.) range.

• Medium range, duration between 2 and 6 hours.

Use 3704 km (2000 n.mi.) range.

• Long range, duration _ 6 hours.

Use 9260 km (5000 n.ml.) range.

Temperature Conditions - Evaluate aircraft performance for each of the following
temperature conditions: !

4

• Standard day normal atmosphere

• A standard high temperature atmosphere.

• A special low temperature atmosphere selected to represent a one day per
year worst case condition.

Candidate Fuels - Fuels to be considered in the study were limited to

hydrocarbons which would result from relaxation of property limits currently
specified in ASTM D 1655-BI. Other types of fuels such as hydrogen, methane,
alcohols, and metal or carbon slurries were not included.

Fuel System Limits - The study was limited to consideration of any system,

subsysL :m, or component that is involved in the containment, delivery, or control of
the _Jel to the engine combustor. It was thus limited to delivery of the fuel

, tlrough the combustor fuel injection nozzles and did not include the combustion
9rocess itself.

Evaluation Requirements - Compare the flight performance of the reference

aircraft using ASI_M D 1655-81 Jet A kerosene as a baseline with four versions of its

fuel system using postulated relaxed f,el properties. The four versions include the

unmodified reference aircraft fuel system and three candidate advanced fuel system

concepts designed to permit use of the relaxed fuel properties.

"_ 9
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Evaluation Criteria - Evaluate the performance of the reference aircraft using

the following criteria:

• Aircraft weight variation for constant range missions (see Flight

Requirements)

Gross Takeoff Weight

Operating Empty Weight
Block Fuel Weight

Payload Weight

• Cost (manufacturing, maintenance, operations) as functions of fuel cost

• Safety

• Support requirements

• Complexity

2.2 Overall Approach

The study was conducted using analytical methods which have largely been
substantiated by, or correlated with. experimental data; however, in some cases new

methods had to be developed for which no experimental results exist.

The study effort was divided into three sepa1_to tasks. A block diagram showing

the task breakdown and the interrelationships between them is provided in figure i.

A more detailed listing of the task breakdown is as follows:

Task I Baseline Aircraft Design and Input Data

• Compile pertinent data on the L-IOII-500 long-range commercial transport!

aircraft.

• Identify flight parameters and fuel flow conditions for the L-IOII-500

aircraft for short, medium, and long-range flights, and for hot, cold,

and standard atmospheric conditions.

• Identify candidate values for fuel properties which are relaxed from

those of the current specification.

: • Evaluate performa;,ce of the baseline aircraft using the selected fuel
properties.

• Task II Conceptual Fuel System Designs

• Deve)op design concepts of advaDced fuel system components and

subsystems.

• Establish designs of three candidate fuel systems for the basellve

"_ aircraft which are capable of using hypothetical fuels with the relaxed

properties.

i0
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Figure 1 - Advanced fuel system concepts technical approach.
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Task III Performance Evaluation of Candidate Fuel Systems

• Determine performance of each candidate fuel system in the modified

baseline aircraft using the relaxed property fuels. Evaluate for short,

medium, and long ran&e flights, and _or nominal and extreme temperature
conditions. Select the preferred system.

• Provide recommendations.

12
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3. BASELINE AIRCRAFT

3.1 Aircraft Description

The baseline aircraft selected for evaluating the candidate fuel systems is the

Lockheed L-1011-500 shown in figure 2. A summary of its design characteristics is

showr in table I. The L-1011 is typical of current wide-body aircraft used in both

i domestic and international air routes. Versions of the L-1011 are used in short and

medlum-range applications as well as long-range applications which require added fuel
in center section tanks.

The major impact of fuel property changes will be on the aircraft and engine fuel

systems including fuel tanks, fuel supply systems, fuel metering systems, and the

associated materials which are in contact with the fuel. Consequently, the following

sections will describe only those systems which are directly affected by the fuel

property changes.

3.1.1 Aircraft fuel system.

3.1.1.1 Aircraft fuel tank arrangement: The aircraft fuel tank arrangement,

shown schematically in figure 3, includes four engine fuel feed tanks, all located in

the wing, which function as a three-tank system. Tanks are numbered from left to

right, 2L, I, 3 and 2R. The 2L and 2R ranks have an inboard and outboard compart-

ment. Al_hough any tank can supply fuel to any engine, the No. 1 Tank normally

supplies fuel to the No. 1 engine, the 2L and 2R Tanks to No. 2 engine, and the No. 3

Tank the No. 3 engine. In addition, two auxiliary fuel tanks, designated IA and 3A

located in the aft three bays of the wing center section box beam, replenish fuel

depleted from Tanks 1 and 3 as required.

The 2L and 2R Tanks each have an inboard and outboard compartment separated by a

solid bulkhead. For structural reasons during flight, approximately 3856 kg (8500

ib) of fuel are retained in each outboard compartment as long as possible. A

transfer llne connects the outboard compartment to the inboard compartment surge box.

When fuel in the surge box drops below approximately 454 kg (I000 ib), a float level

control valve opens and fuel transfers by gravity to the surge box rendering the

outboard compartment fuel available for usage.

Fuel transfer from the auxiliary Tanks (IA and 3A) is accomplished by means of

ejector pumps. Motive flow for the ejector pumps is taken from the main discharge of

the booster pump in Tanks I or 3.

i 3.1.1.2 Fuel management: The aircraft fuel storage tanks were initially sized

to provide each engine with essentially the same available fuel quantity for

operation on a normal tank to engine feed system selection. However, with the

addition of fuel stcced In the center section bays for long range flights, fuel

management is utilized to sustain the basic tank to engine feed system principle and

to allow the wing bending moments to remain within their design criteria. This is

accomplished as follows:

Taxi, takeoff and initial climb mission segments are performed with tank to

engine fuel feed. When the total fuel depletion approaches 6350 kg (14,000 ib), the

.:. 13
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TABLE 1 - BASELINE AIRCRAFT DESIGN SUM_IRY

Wing S.I.Units U.S. Umts

• Area 329.0m2 (3,541 ft2_
Ref. Area 321.1m? (3,456 ft 2)

1/4 ChordSweep 350

AspectRatio 7.62

HorizontalTail

Area 119.1m2 (1,282 ft 2)

Sweep 350

VerticalTail

Area 51.1 m2 (550ft2)

PessenoerCap_city 242

DesignWeights

MAX Takeoff 231 293 kg (510,000Ib)
MAX Lending 16_ 322 kg (368,000Ib)

MAX ZeroFuel ,43 314 Lt] (338,0001b)

OperatingEmpty 1 ', J07 kg (245,3f'0 Ib)
FuelCapacity 96 900 kg (213,640Ib)

Engine

SL StaticThrust 222 410 N (50,000Ib)

': TakeoffFlat Rating 29°C (84OF)

AirplanePerformance

TakeoffF;eldLengthat SL 29°C (84°F) 2760 m (9,060 ft)

LandingField Length 2070 ,'n (6,790 ft)

1

I

i
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crew initiates crossfeedlng to all three engines from Tanks 1 and 3 only. Cross-

feeding is continued u_til fuel Is depleted in Tanks IA and 3A, and fuel quantities

in Tank I, and rank 3 and the sum of the fuel remaining in Tanks 2R and 2L are equal.

3.1.1.3 Engine feed system: The No. I and No. 3 Tanks each contain two

idpnttcal ac motor-driven boost pumps and check valves, adc motor-actuated tank

qhutofl valve located within the engine pylon upstream of the ftrewall, and the

interconnecting plumbing to the interface with the engine.

The feed system for the No. 2 (aft fuselage) enbine consists of; a) two pumps

identical to those in the No. 1 and No. 3 Tanks in each of the two outboard Tanks (2L

an. 2R, b) a manually operated shutoff valve for each llne where the lines exit from

each tank at the wlug root, c) a flow equalizer which equalizes the two tributary

flows, d) a dc motor-actuated isolation valve located at the aft wall of the center

section, e) two dc motor-actuated emergency (firewal!) shutoff valves located

upstream of the firewall, and f) the interconnecting plumbing to the engine luter-

face. All fuel lines in the wing are contained inside the tanks. The No. 2 engine

feed line is enclosed in a shrouded tube under the cabin floor within the pressurized

compartment.

A cross-feed system connects to the normal uank-to-engine feed ilnes througl,

appropriate dc motor-actuated chutoff valves and lines so that fuel can be supplied

from any of the three tank systems to any engine.

To assure fuel availability to the tank boost pumps during various airplane

attitudes and reduced fuel tank capacities, each tank contains a 454 kg (!000 Ib)

surge box reservoir, maintained full by scavenge eJcctor pumps.
1

3.1.1.4 Auxiliary power unit (APU) feed system: Fuel for the APU is supplied

from Tanks 2L/2R by means of a common feed line with the No. 2 engine. A branch from

the common llne feeds directly to the _PU interface through two emergency (flrewall)

motor-actuated shutoff valves.

3.1.1.5 Refueling system: A pressure fueling system with two fueling stations

(outboard of each wing engine nacelle) is used to fuel the airplane. Each station

has two 2-1/2 inch diameter standard type D-I adapters suitable for accepting hoses

from ground support refueling equipment. The right slde station contains all of the

gages and switches necessary to control and monitor the complete fueling operation.
All tanks can be fueled from one station or the other, or from both stations

s'multaneously. Adc motor-actuated shutoff valve is located in the cross shlp

fueling manifold so that the left and right sides of the system are isolated from

each other during normal fueling from both stations simultaneously. Dual type

electrically-operated shutoff valves are used to each tank. Fuel level, dual float

control pilot valves located at the full tank quantity level automatically operate
the shutoff valves to prevent overfilling the fuel tanks.

3.1.1.6 Jettison system: Fuel jettison in flight is accomplished by means of

the fuel tank boost pumps. During Jettison, the boost pumps also feed the e_glnes at

the necessary fuel flow rate demanded for flight operational conditions. Fuel exlt_

overboard through a dump mast whlch is located well outboard tn the wing trailing

J edge. To prevent Jettisoning fuel below I0 886 kg (24,000 ib) of airplane fuel, low

level thermistors are installed in the tanks to shut off the Jettison flow.

:.. 17
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3.1.1.7 Vent systems: An open vent system is provided for all fuel tanks. Two

vent outlets in each tank are required to insure communication to the ullage space

for various aircraft attitudes. The aft vent outlet fnccrporates a float-operated

ve,. valve which closes to avoid z_pillage out the vents during climb and opens durlng
d _ccnt to allow venting at attitudes in which fuel covers the open forward outlet•

3.1.1.8 Scavenge _ystem: The scavenge system consists of a series of Jet pumps

using motive fuel flow under pressure from the fuel tank boost pumps tc induce a

secondary flow from low points in the fuel tanks. The intent is to zemove fuel and

free water by scavenging through the secondary lines and delivering it to the surge
boxes vhere it is pumped to the enginas and consumed• The system works in parallel

with the surge box wall-mounted flapper check valves for supplying fuel to the boost
pumps.

3.1.2 Engine fuel system. - The engine fuel system is shown schematically in

figure 4. It consists of a low pressure fuel pump which receives fuel from the
aircraft fuel tank boost pumps and delivers fuel through a low pressure fuel filter

to the low pressure side of a fuel-cooled oil cooler. The fuel then paste8 through a

high pressure fuel pump and iJ delivered through the high pr-_sure side of the fuel-
cooled oil cooler and rue] regulators to the fuel injectors in the engine combustors.

A brief description of the major components of the system follows.

3.1.2.1 Fuel pumps and spill valve: The LP pump is a centrifugal design and has

been sized to provide the best matching between RPM a,o fuel flow rate during takeoff
and climb.

_I4_ IIN_ _LJ|k

¢ ,

' Figure 4 - Baseline engine fuel system schematic.
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The HP pump is of the gear type with the plate ends being lubricated by the fuel.

; Its operating point has been selected to provide an optimum match between speed and

uol_metric flow rate at takeoff and climb conditions. At low power levels, the

delivered fuel flow rate is much in excess of what is required by the engine fuel

metering system, and a HP bypass conduit _ provided to spill the excess fuel. The

_mount of bypass fuel is controllea by the spill valve sssembly under the control of

the fuel metering swstem. Th_ spill valve assembly is integrated with the combined

pump unit.

3.1.2.2 LP fuel filter: Thls u_i_ has the primary function to filter the debris

washed down from the wing tank and prevent it _rom invading the fuel meteriz;g system

and other small passages. In those cases in whlch severe pressure drops may exceed

the operatlonal limits of the fuel _ystem, a bypass mechanism overrides the fuel
filter.

3.1.2.3 Fuel cooled oll cooler: The fuel-cooled oil cool_r exchanges heat

between the fuel anu the engine _cavenge o[i. It serves two rurposes: to heat the
fuel at cold fuel conditions and to cool :he oil at hot oil conditions.

3.1.2.4 Fuel flow regulators: The Main Fuel Flow Regulator controls the fuel

pressure supplied to the f_ei injectors directly and through the Starting Fuel

Regulator and Cold Day Enr{chment Valve it supplies added fuel during normal and cold

day engine starts respectively.

3.1.2.5 High pressure shutoff valve: This valve has a dual function: a) itt
interrupts completely the fuel supply to the burner system when the engine is shut

down; b) after shutoff, it allows the fuel located in the hot region system compo-

nents (manifold, distribution valves, and injectors) to be drained by means of a

separate line to the cool fan case region, and delivered to a small tank.

4

3.1.2.6 Fuel manifold distribution valves and spray nozzles: The fuel manifold

d!stributlon valves and pigtail conduitE to the {nJectors are shown in figure 5. The

distribution valves are passive and control the fuel fraction through them by means

"" ,_ a biased sprlng-loaded poppet. There are six distribution valves with each valve

di_trlbuting the fuel to three Injectors. The location of the spray nozzles and

distribution valves can be seen in figure 6. Spray nozzles Ncs. 8 and 12 are

provided with ignitor plugs for engine start.

19
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Figure 6 - Burner and fuel distribution valve positions

4

Figure provided through the courtesy of

Rolls-Royce, Limited.

3.2 Flight and Temperature Profile Descriptions

3.2.1 Payload/range requirements. - A payload range curve for the L-IOII-500 is

presented in figure 7. This type of presentation shows the limiting values for an

aircraft in a particular configuration flying under a particular set of conditions.

The figure shows, for example, that maximum payload is limited to 42 000 kg and that
maximum range at that payload is obtained when the airplane takes off at the maximum

allowable takeoff gross weight. Payload is traded for fuel as the operating point

moves down the maximum takeoff gross weight line until the maximum fuel capacity is

reached. From this point down to zero payload, the fuel capacity is the limiting

factor and the range increases as the takeoff and thus the mission weight is reduced.

With selection of the L-1011-500 as the baseline aircraft, typical missions that

; fit the study requirements for flight duration were defined as follows:

a) short range, (less than 2 hours) = 926 km (500 n.mi.)

b) medium range, (2 - 6 hours) = 3704 km (2000 n.ml.)

c) long range, (greater than 6 hours) - 9260 km (5000 n.mi.)

These ranges are consistent with operational missions that an airline might

schedule for the L-IOII-500. In service an airplane is not scheduled at its design

range and payload for each of its flights but will typically fly at shorter ranges

21
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Figure 7 - Baseline aircraft payload/range - hot day (ISA + 34°C)

and reduced capacity, as for example the shaded area of figure 7. During 198], two

operators of the L-1011-500, reported average ranges of 6612 km (3570 n.mi.) and 7084

km (3825 n.ml.) resDectlvely.

A payload of 18 144 kg (40,000 Ib) was selected as the typical operational

payload for this study. This represents passenger load factors in the range from 60

; to 70 percent and cargo loads between 4536 and 2268 kg (_0,000 and 5000 ib). The

airlines mentioned above had load factors of 63 percent and 74 percent for the

L-IOII-500 for the reporting period. The total industry average load factors for the

same period of 1981 and the available reporting quarters of 1982, averaged slightly

lower (Ref. I). The selected payload of 18 144 kg (40,000 ib) therefore encompasses
the payloads being realized.

To allow for the full capacity case, calculations were also made with I00 percent

passenger load factor and 2268 kg (5000 ib) of cargo. This was accomplished on the

extreme hot day and used to determine the operational capability of the airplane with
the fuel system changes.

3.2.2 Flight profile. - Flight profiles were selected to simulate properly
airline operation. Thus, Federal Aviation Agency rules were considered as well as

practical operational limitations. A consistent set of ground rules were used for

i each of the temperature environments, differences occurring only when dictated by

_ engine limztatlons. The flight profiles selected consist of four major segments:
takeoff, climb to altitude, step cruise and descent, qn the standard and extreme

cold days they are identical insofar as altitudes and speeds are concerned but on the

extreme hot day the altitudes vary due to thrust limitations on the engines.

if 22
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On the e_treme cold a,_ standard d ys climb is made with Normal Climb (Maximum

Cruise) power at a calibrate_ airspeed of 165 m/sac (320 kt)/Mach 0.8_ to the nearest

od_ pressure altitude below thqt for a W/ of approximately 0.86 x I0v kg (1.9 x
I0 Ib), with a maximum pressure altitude of ii 887 m (39,000 ft). This value of

weight over ambient prcssure r_zio has been determlned from previous Fli_ht

Management System studies to represent the best altitude at which to init._te elsise

from an optimum cruise standpoint. On the extreme hot day, climb is made with

Maximum Climb power at a calibcated airspeed of 165 m/sec (320 kt)/Mach 0.82 to the

highest pressure altitude at which the aircraft can still fly with Maximum Cruise

_ Power, again with a maximum pressure altitude of II 887 m (39,000 ft). A minim_,m c f

: 91.4 m/min (300 fpm) rate of climb capabil_ty is maintained throughout the climb

segments.

A Mach 0.82 cruise, at partial oower, is then initiated at the end ,f the climb

segment a.d continues until the specific air range (F_/kg fueT) is gLeater at an

altitude 1219 m (4000 ft) higher. This procedure is coetinued to ac.__ve the desired

m_ssion range. This step crulse operation is used to approximate cruise at optimum

_pecific air range and is consistent with airline operation when Air Traffic Control

designates the available altitudes.

The descents from altitude for the mission profiles are done at cabin pressure

limited rates of descent. A cabin limited rate of descent is defined as the rate at

which the total time to descend is equivalent to the time required to pump the

pressure in the cabin up to the ambient pressure at the end of descent. Upper

portions of the descent are often limited by the maximum cabin pressure differential.

In these cases an idle power setting would bring the aircraft down faster than the

: limiting pump rate could bring the pressure up _n the cabin and the cabin pressure

differential would exceed its limit. For this reason, the first segment of some of

the high altitude descents require partial power.

Reserve fuels were calculated and are included in the missions. Domestic rules

were used for the 926 and 3704 km (500 and 2000 n.mi.) missions and International

rules for the 9260 km (5000 n.mi.) mission. All of the reserves were calculated for

a 370 km (200 n.mi.) alternate range. The cruise portion of the flight to an

alternate airport for extreme cold and standard atmospheres was flown at 9144 m

(30,000 ft); however, on the extreme hot day mission a 6096 m (20,000 ft) cruise

altitude was used due to thrust limitations.

. Domestic Reserves are calculated using the following flight profile segments:

i) Missed approach, climb to 457 m (1500 ft)

2) Climb to 3048 m (i0,000 ft) at a calibrated airspeed of 129 m/s (250 kt)

3) Accelerate to a calibrated airspeed of 154 m/s (300 kt)

4) Climb to cruise altitude at _ calibrated airspeed of 154 m/s (300 kt)

5) Cruise at optimum Mach
6) Descend to 3048 m (i0,000 ft) at a calibrated airspeed of 154 m/s (300 kt)

7) Decelerate to a calibrated airspeed of 129 m/s (250 kt)

8) Descend to Sea Level

9) Include a 45 minute hold maintaining the fuel flow at the end of cruise

International Reserve calculations are broken down into two parts: Part I is the

contingency fuel _hich is I0 percent of the total flight time at the fuel flow at the

ii 23

®

 19850 10866-032



end of the labE cruise segment, and Part II which is a flight profile broken down

into the following segments:

I) Missed approach, climb to 457 m (1500 ft)

2) Climb to 3048 m (I0,000 ft) at a calibrated airspeed of 129 m/s (250 kt)
3) Accelerate to a calibrated airspeed of 154 m/s (300 kt)

4) Climb to cruise altitude at a calibrated airspeed of 154 m/s (300 kt)

5) Cruise at optimum Mach

6) Descend to 3048 m (i0,000 ft) at a calibrated airspeed of 154 m/s (300 kt)

7) Decelerate to a calibrated airspeed of 129 m/s (250 kt)

8) Descend to Sea Level

3.2.3 Temperature-altltude profiles. - For this study three different

atmospheric days were used for analysis purposes. These were a standard day, an

extreme cold day and a_ extreme hot day (figure 8).

3.2.3.1 Standard day: The standard day temperature - altitude profile is

defined to be that set forth in the 1962 U.S. Standard Atmosphere tables.

3.2.3.2 Cold day: The cold day temperature-altitude profile was developed to
realistically represent an extreme cold aay environment. World extremes of

temperature have been compiled into MIL-STD-21OB, "Climatic Extremes for Military

Equipment". _lese extreme cold day ambient temperatures may be expected to occur

once in I0, 15 or 20 years, depending ,._on the lengths of record from which they were

obtained but represent approximately zero probability basis for a given year. A more
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Figure 8 - Altitude/temperature profiles
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realistic method relating extreme cold ambient temperatures at altitude to global
location was formulated in a recent NASA study (ref. 2). This £tudy showed the

extreme cold temperatures that might be encountered by aircraft during a flight with

an annu..l 0.3 percent probability of occurrence (one day a year).

The one day a year percent probability of occurrence, translates Into an extreme

cold temperature exposure tlme of 1.8 minutes for the 9260 km (5000 n. mi.) cold day
mission. The time duration at the minimum ambient temperature is very short relative

to the total tlme of the flight and thus has little effect on the the fuel

temperature. An aircraft flying the route for a month would have the equivalent of

30, 1.8 minute extreme cold temperature exposures, or one 54 minute period per month.

A time period of one hour was assumed in this study which allows a reasonable amount

of fuel tank exposure time to the extreme cold temperature.

The minimum fuel temperature is calculated by determining the heat transfer to

the air adjacent to the wing skin and the time of exposure. The temperature of this

air is a function of st_tlc air temperature, aircraft speed, and the percent of

stagnation temperature rise recovered in the boundary layer air. The static or
ambient temperatures for the cold day temperature-altltude profile were developed

from statistical temperatu:e information derivcd from actual worldwide temperature
recordings to 16 154 m (53,000 it) (ref. 3). Temperature data were compiled and

computed to report a mean route temperature with 50, 75, and 85 percent probability
of eccurrence; i.e., temperatures which are not expected to be exceeded 50, 75, and

85 percent of the time.

To determine tre probability of temperatures which are not expected to be

exceeded, an inverse normal integral function (Gaussian distribution) was utilized.
The one day a year, 0.3 percent probability, was input to this distribution to

determine the standard normal variable. The standard normal variable for 0.3 percent

and the temperature and standard normal variables associated with 50, 75, and 85

percent probabilities are plotted to extrapolate a temperature for the one day a
year, 0.3 percent probability.

The cold day temperature-altltude profile is shown in figure 8. These altitudes,

temperatures, and probabilities were utilized in the cruise portion of the flight to
define the ambient temperature through which the aircraft flies. This ambJent

temperature profile for the 9260 km (5000 n.mi.) cold day mission (figure 9)

represents the worst case extreme cold day temperature environment used to predict

the fuel tank temperatures in this study, b

3.2.3.3 Hot day: The hot day temperature - altitude profile follows the hot day

environmental operating envelope of the L-1011-500. This is the maximum temperature
day for which the environmental control system of the L-1011-500 remains within its

operating design limits.

3.3 Baseline Aircraft Performance

Performance of the reference aircraft was determined on the selected _light
profiles for each of the mission ranges and for the three temperature profiles; this
was accomplished using the Lockheed Aircraft Mission Analysis Program. The results
have been summarized as time histories of altitude, Mach number, ambient temperature
and fuel quantity in each of the tanks while flying at a constant airspeed of Mach
0.82. Each of these variables were calculated for all nine mission range-atmosphere
combinations for use in determining fuel tank temperatures. Hcwever, only selected
values are shown for each of the combinations.
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Figure 9 Cold day flight profile, 9260 km (500 n.ml.) mission

3.3.1 9260 km (5000 n.ml.) mission. - The entire set of data for the critical

mission, 9260 km (5000 n.mi., on the cold day, are presented for illustration in

figures i0 through 12. Figure i0 shows that for optimum specific range the airplane
cruises at altitudes of 9449, i0 668, and II 887 m (31,000, 35,000, and 39,000 ft).

The ambient temperature that the aircraft operates In _uring the flight is presented

in figure I_. During the majority of the cruise the amolent temperature is in the
range from -73 to -51°C. Fuel quantities in each of the four tanks are shown in

figure 12. From this figure it can be seen that all of the fuel in Tank IA Is used
before burning any significant amount of fuel from any of the other three tanks.

When Tank IA is depleted, fuel is used from Tank I and shortly afterward from Tank 2
Inner. When Tank 2 Inner reaches the 454 kg (I000 ib) level, thls level is

maintained by transfer from Tank 2 Outer. Tanks 1 and 2 Outer are then used until
the end of the flight.

For the remaining mission range-atmosphere combinations, only the altitude and

ambient temperature time histories are presented. The flight profile on the standard
day uses the same cruise altitudes as the extreme cold day and the altitude time

history Is therefore similar, as shown In figure I0. The corresponding ambient
temperature time history for standard day is presented in figure II. On the extreme

hot day, however, figure IO ohows that the cruise altitudes vary, due to thrust

limitations, and the flight profile is at lower altitudes. The cruise al_tudes for

the extreme hot day are 8839, 10 058, and 11 278 m (29,000, 33,000, and 37,000 ft).
The ambient temperature time history for this flight profile and atmosphere is also

shown in figure ii.

' 3.3.2 3704 km (2000 n.mt.) mission. - The flight profiles for the medium range
! mission are similar for the standard and extreme cold days and different for the

extreme hot day. On the standard and extreme cold days the aircraft climbs to a
cruise altitude of ii 887 m (39,000 ft) and remains there until the descent to the
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Figure i0 - Flight profiles, 9260 km (5000 n.ml) mission.
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Figure 12 - Cold day fuel quantity, 9260 k= (5000 n.mt.) mission.

destination. However, on the extreme hot day the aircraft climbs to an initial

cruise altitude of I0 668 m (35,000 ft) where it remains for a period of time and J
then to a final cruise altitude of ii 887 m (39,000 ft) where i_ remains until

descending to the destination. 4

In figure 13 the flight profiles are shown as plots of pressure altitude vs

flight time for the extreme cold, standard and hot days. The ambient temperatures

associated with these altitude-time profiles are presented in figure 14. The mission

fuel tank quantities are shown in figure 15 for the cold day only since the standard
and hot day fuel tank quantities are not critical in this study.

r I

3.3.3 926 km (500 n.mi.) mission. - In the short range mission, less than two

hours, a flight profile containing only one cruise segment is used. The aircraft

climbs to the cruise altitude, cruises, and descends to the destination. The same

cruise altitude of Ii 887 m (39,000 ft) was used for all three temperature profiles.
In figure 16 the flight profiles are shown as plots of pressure altitude vs flight

time for the extreme cold, standard and hot days. The ambient temperatures
associated with these altitude-time profiles are presented in figure 17 and the cold
day mission fuei tank quantities in figure 18.
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4. FUEL PROPERTIES

4.1 ASTH Specificatio,'

Current commercial aircraft use jet fuels whose properties are wtthtn a_ envelope
of limiting value_. These limits, currently establisheq by ASTM specification D

1655-8]_ for Jet A, .Jet A-l, and Jet B, are shown in table 2.

, The airframe and engine manufacturers have also established materials selection

and component design criteria, which assure a highly reliable aircraft able to

operate within reasor_able economic margins, as long as the jet fuel properties are

kept _ithin specifications. When significant problems arise in fuel supply or

utilization, the related specification limits are carefully examined in order to

decide whether they should be relaxed (supply problem) 3r tightened (utilization

problem) for coping with temporary or permanent situations. For example, in the past

years there has been a trend to increase the aromatics content beyond the normally
allowed maximum limit of 20 percent in volume. As can be seen In table 2, aromatics

content [s presently permitt_d uo to 25 percent, provided the supp!_er notifies the

T_urcbnser within 90 days, or if other reporting conditions mutually aF_eeable to both

oartles are made. The allowance was only temporary and was subject to further

approwl by 1982. If the experience accumulated during the property relaxation

period demonstrates that it is safe and reasonable to operate under such conditions,

this rel_xation can become permanent.

In tbe last ten yt,_rs, however, thero h_ve been clear signals that during periods

of fuel shortage, the availabilf y of jet fuel may be jeopardized because of competi-
tion from oth,:r important sectors of the fuel market, s,_ch as diesel f,,els and

heating oils. Studlm_ hav_ been conducted wbich show that in the future, jet fuels

will most prcbably have to be produced from heavier petroleum fro tions with
increasing participation of shale oil and coal syucrude blends. The back end of

thes,, dls:illates would necessitate additlo-_l processing in the refinery in order to

meet present specifications. This would undoubtedly translate into higher fuel

costs, with the corresponding impact on direct operating costs.

_ al,ernate approach under study by NASA and DoD agencies proposes a

re--examination of the present speclfications iI_ view of the advancements which have

beec introduced in the last 30 years in airframe and engine technology, coupled with

" a deeper understandtn_ of the behavior of fuels in fuel systems and engines. An

assessment on how far the specification limits cou!d be relaxed, wh'[e still opera-

tiLlg the alrcraft within safe and economic limits, could result in a greater

availability and significant energy and cost savings.

4.2 C_ndidate Fuel Property Changes

Since the Arab oil embargo the cost of jet fuels has almost quadrupled and under

special circumstances, such as severe winter weather, fuel procurement actions have

been hampered. These developments have motivated the oil industry to turn their

interest to non-petroleum resources for the production of fu, ls for jet aircraft and

other uses. In the military, these concern_ were rai_ed early in the middle 1970's

when a series of feas[billty studies were conducted to asse_s the potential contri-

bution of oll shale, _'oal, and tar sands as raw m,.terials for augmenting the supplies
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TABLE 2 - DETAILED REQUIREMENTS O1' AVLArlON TURbiNE FUELS
D 1655-81 SPECIFICATIONS

T-
L P.e,¢=_.... J_tA rlr p_A I JP'B ASTM TestMethodB

J -4

Ar,_,;y,t.tal.la_mg KOh g 0 1 [3914or03242

Aromahrs _o,,rna_% /_C 20C DI319

Sultu, mercaptan,[} wt max '% 0 003 8 003 0322;

"- Sulfur total wt max ',, _ 3 0 3 D1266 ur 01552 or 0262?
01$f_fletlontemoeraturg °C 'UF_

x _0%recoveredmax leap 7F}44 t4OUI [386
20q_recovered ma_ tem_, 143 3 (29"J_
90% ._.:o,ered max te,'_p ,epo,t 282 8 _3701

9P_=reck1,_.rgdmax temp leport 243 3 _470_

k,naLbolhng ,.oat rr,ax ut I('l -, d0O_572)
DJstdlat_onresidue me. "_ 1 5 1 5
OlstJlatlOh_OSSnlax_ I 5 1 5

F ashpo.lt mlr, UCtUFI ,q7 81 ,00 056 o, D3243L

Gray,ivmax oAPIhl.n sp_,)alI%b'_I 51 107753, 57 _O7501_ D1299

Grav,r_ n,ln oAPI ,max sp.rl _t 15[oC J7 (r) 8398} "5 _(_8517_ D1298

I 36 13% I D323Vapor_resslJren_ax kg _'hl

Freezl._ po_qT,max nc 40 JetA E 50_ D2386VESCOS_t¢I20UC) 4°_max rSt 947JetAIEF 0445

Nefheatofcomb_t_ohr],n,kJkg_[_t_'Ib, 42795(1940[IH_ 42795_Id:00H} 014050_02382CombustJn -toperI es nne_ttn_ tn lot4,, g_e

pul.ementlshailbemet

,t) Lumlnomet{'numbermlno' 45 45 D1740

(2) _moke poet _Nh Or 25 25 DI,]22

43) Smoke pint m_n and 20G 200 B1322

Naphthalene_vO:ma_ _ 3 3 01840

Cnlrnsloncopperstrlp2hatl00UC12_2OrlTnax No 1 NO f O1`]0
ma_

Thermal |IabN,_ one _f the fOIIow'T,_re_ ,re
ment_shellbe meT

(I1 Fillerpleuuredrop ,'_a_',,r,Hq 76 2 162 D16G0i

Preheaterdeposit less•nan Cnde3 [ r,de3

_2} F,Iter pre_u,e drop max mmHg 25 25 O3241J

Tubedeposit!e.,s_'la,l Code3 Cod_ 3

E_l_ent gum, max mg T0Drnl 1 I 0381
Waterreaction

Separat,nn_at,,,gmax I2_ _2l 01094

InTerfacerat,ng ma_ ,h _b 01094
Add,t,vm See4 2

Electricalconductivity pS'm K K 02624 or O]114

AThe requirementshereine_eabsoluteanoarmnot sublect to correctionto_ toJeranceof ttie testmethods _I mult_plg

determlnanonsare made lyeegoresuV shei be used
BThe test ra_thodsind,cetedin th_stable are referredt_ _nSection9 . _

CFuelswith In atom&tic,conten_over20 vol¢_me%but nDtexceed_n§25 vo_un.e%}re permittedprovided the supplier (seherl
notifies the purchaserof the volume d_stibution andaromaticcontent w_th,q90 daysof dateot shipment unle_ other

teportin_ conditionsareagreedto by bnth p_rtle$ Th_sfootnote _|subjectto ,&approval,n 1982

DThamerclptln tuHur direr _mahon maybe wa_ve(,_f the f,at__sconsidered_weetby Ihe doctor 'askdescribedm 4 2 of
Speclf,clt_on0484 for Hydrocarbon0 VOeenlngSolven's`] #

: EotheffrNzlng peatsmay be agreeduponbelweensupphefand purchaser

, FThe _7_C mix,mum freez,ngpo,nt tract for Jet A I _ss,,blect to reapproval,,_1983 If not reapproved,the va;ue wdl revert to

-50oc mix=mum

GFuellhavre@m smokepoint1111than20 butnotlessthan%8end e mexlmum of3 volume% ofnaphthalene$arepermmed

provldadthesupplier(loller)nofiflesthepurchet_rofthevolume,diltrlbuf_onand smokepoint}ndnaphfhelenescontenl

w_thin90 daysof date ofshipmentunllsl olhel reporting condlt_onsire agreedTobv both petites This footnote iSsob_act

_= tOroepprovat,n 1982
HI_se for JetsA endA lthe vl_ue calculatedfrom Table3 or Eqs5 end9 inMethod D1405 Usefor Jet 8 Thevaluecelculetod

from Table6 or Eqs$ and7 in Method01408 Method 02382 maybl usld i| &nllllrnltlVl In cell of disputeMethod02382

mustbeu:ad

• IThermal|t_b,t_ty testshsllb_ ,.onductedfor 5 h at 1488°C 1300oF) pc&heatertemper&tore204 4°C ',4OO°F)hirer temperlturs,
endIt aflow TOteOf2 7 k_h (6 Ib/h)

JThe_molstibdiw tail IJf'" OT) shill be conductedfor 2 5 h it • control temperatureol 260oc but .f Ihe requlremo.tsof

Table Iere n(,trest. fh,. '_'.t rosyhe ct_)nductsdfor 2 5 h at _¢ontIoI temperatureof 245oc Resultsatboth test t|mparatures

" shallberlportedln fhlsCes• Tubedepus_tssh&llelwaysbsreportsdbvthlVisualMlthGd,lratlngbytheTubeOeposlt
Retmg(TDR) opt_roldensitymelhnd _sd.. ,eb_ebut not mandatory
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of aviation turbine fuels (see references 4, 5, and 6). It soon became evident from

those early studies that:

i. It was possible, in principle, to manufacture jet fuels from

syncrude which can meet current specifications.

2. The additional refinery pro_essing that was required to bring

the synthetic fuels within the specifications would undoubtedly

result in higher costs to the consumer and higher process energy

consumption at the refinery.

3. Jet fuels from shale oil would be similar to petroleum derived

jet fuels, while jet fuels from coal syncrude would be either heavy

in aromatics or, after hydroprocessing, highly dominated by

napthenic based components.

4. Considerations related to capital investment, risk minimization

and other competing sectors from industry indicate that, in the

short term, jet fuels will still be produced from petroleum sources,

although with increasing participation of the heavier distillate
fractions.

5. Before the year 2000, some jet fuels will probably be partially

manufactured from shale oil, although the percentage penetration in

the jet fuel market is uncertain and will undoubtedly be dependent

on the energy supply/demand scenarios that result from growth or

no-growth economic trends.

6. Before the turn of the century, it is expected that some fuels

will be derived from coal. It is believed that given the higher

tolerance to napthenic based fuels by the gasoline, diesel, and

heating oil consumers, the contribution of coal will be more

noticeable in those sectors, leaving the petroleum based crudes

freed for the manufacture of aviation turbine fuels (see

reference 7).

In summary, in the short term, current trends indicate that future jet fuels will

be manufactured with medium distillates obtained from heavier petroleum fractions by

means of cracking and hydroprocessing. In the intermediate future, before the turn

of the century, shale oll derived jet fuels could become an important fraction of the

total aviation turbine consumption; and in the long term (50 years from now), if jet

aircraft are still powered with hydrocarbon fuels (there are strong indications that

liquid hydrogen and liquid methane could become major fuels for large aircraft after

the turn of the century), most of them will be derived from coal and consequently

will be of a napthenlc and aromatic base.

The J tional Aeronautics and Space Administration, and the Department of Defense,

have active programs in jet aircraft hydrocarbon fuel technology aimed at

investigating the required technological developments which may be necessary in the

future (references 7 and 8). These programs comprise studies and experimental

testing. In order to provide a common reference base for the program activities, an

I Experimental L_e_eree Broad-Specification (ERBS) fuel was recommended (see

reference 9). Quoting from this document, the ERBS fuel was suggested to be used as

a base case fuel in the programs aimed at developing new engines and fuel systems.
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The proposed specifications are given in table 3. In this study, the ERBS fuel was

intentionally selected to provide a fre_back and ascertain as to whether the

tentative limits originally recommen _ for the ERBS were or were not adequately

established (at that time, very few r, _Its were available from the airframe industry

to provide a sufficiently sound basis on which to recommend the working ERBS limits).

4.2.1 Freeze point. - The _reeze point is presently specified in ASTM D 1655-81

at -40°C (-40°F) for Jet A fuel, and is defined as the temperature at which suspended

waxes in the fuel disappear while on a warm-up cycle after a previous chilling cycle.

Visual detection of these waxes is subjective and the reproducibility has been

established to be within 2.6°C (4.7°F) (see reference i0). It is important to notice

: that the vclume percentage of these waxes could be extremely small. The materials

present in the precipitate belong usually to the highest boiling point paraffinic

chains that make their way into the fuel during the distillation or blending process.

It should be expected that under equal circumstances a Jet fuel with a napthenic base

will have a freezing point somewhat lower than one with a paraffinic base. Coal

derived fuels still have a substantial portion of heavy paraffins and the dependence

of the freezing point on the end boiling point and the crude base may be even weaker

than the dependence on the nature of the refinery process employed to manufa,_ture the
fuel.

Reference !i reports on the examination of the d_stribution of published inspec-

tion data of Jet A fuel in an eleven year period, from 1969 to 1979. It was found

that a distribution of freezing points in the 676 samples presented a component

centered very near the present specification at -40°C (-40OF). In fact, it was found

that the freezing point was one of the controlling near-specification properties. A

relaxation to a higher limiting value would obviously have a positive effect on the

availability of Jet A fuel. Furthermore, laboratory low temperature experiments con-

ducted by Lockheed for NASA (reference 12) in an L-1011 simulated tank have shown

that there is a one percent probability that present aircraft may encounter extreme

temperature conditions whlch could result in a freeze-out of 1.2 percent of unusable 4
fuel. Although this quantity is lower than the reserve fuel and would melt during
descent, it is evident that the freezing point specification imposes a constraint on

the fuel system. The freezing point is then an important property to be considered

when designing advanced fuel systems for broadened property fuels. A limiting value

of -200C (-4°F) was selected for this s_udy, which is 3.3°C (6°F) higher than the

ERBS recommended limit to reflect the type of freezing point that a diesel fuel could

exhibit if manufactured from a blend of napthenic and paraffinic crudes.

4.2.2 Thermal stability. - In the most general sense, fuel stability refers to

the ability of a fuel to resist chemical changes due to a shift in environmental

variables (temperature or pressure), exposure to foreign matter (materials compati-

bility), or long term effects (storage stability). Thermal instability makes its
presence noticed by the appearance of carbonaceous deposits, film lacquers and

varnishes on those components of the fuel system whose surfaces have come in contact

with the fuel while being exposed to high temperatures. Storage instability is

' normally associated with the fuel aging processes and manifests itself by the

formation of sediment gums in the fuel tanks. In subsonic flight the components of

the fuel system which are vulnerable to thermal instabilities are those where the

fuel is subjected to moderately high temperatures for long periods of time, or has

come in contact with hot spots for short dwelling times. However, the chemical

mechanisms responsible for thermal and storage instabilities are not too different,

i.e., they may be different manifestations of the same phenomena at different

: temperatures and residence times.
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TABLE 3 - PROPOSED SPECIFICATIONS FOR EXPERIMENTAL REFEREE

BROAD-SPECIfICATION (ERBS) AVIATION TbnRBINE FUEL

ERBS Proposed
Speclf,cat_ans Jet Fuel Value TestMethod

Composition.

Hydrogen,wt % 12.8+0 2 NMR
Aromattcs,vol % Report ASTM 01319

Sulfur, mercaptan,wt % 0.003, max. ASTM 01219

Suifur, tot31,wt % 0.3, max. ASTM 01266

Nitrogen,total, wt % Report Kjeldahl
Naphthalenes,vol % Report ASTM 01840
Hydrocarboncompositionalanalysis Report GCMS

Volatihty:
Distillation temperature,°C (OF) ASTM 02892

Imtial boihngpoint Report ASTM 02892

10 Percent 204.4 (400), max. ASTM 02892
50 Percent Report ASTM 02892

90 Percent 260 (500), ram. ASTM 02892

Final bodingpoint Report ASTM 02892
Residue,percent Report ASTM 02892

Loss,percent Report ASTM 02892

Flashpoint,°C (OF) 37.8 (100), rain. ASTM 056

Grav,ty,API (15 6°C) Report ASTM 0287
Gravity, specific(15.6/15.6°C) Report ASTM 01298

Fluidity:

Freezingpoint,°C (°FI -23,3 (-10), max. ASTM 02386
Viscosity,at-23.3°C (-10°F), cS 12,max. ASTM 0445

Combustmn:

Netheatof combustton,kJ/kg (Btu/Ib) Report ASTM 02382

Thermalstabihty:

JFTOT, breakpointtemperature,°C (OF) 237.8 (460) rain. ASTM 03241
(TDR, 13;and AP, 25mm)

[

' 36

1985010866-045



The ASTM D 1655-81 specification for thermal stability offers two alternatives to
comply with the requirements: a) the AS_4 CRC Fuel Coker described in the

spenificatlon D 1660, or b) the Jet Fuel Thermal Oxidation Tester (JFTOT) described

in specification D 3241. The JFTOT test consists of pumping the fuel sample through

a polished aluminum heater tube, and then through a 17 _m (17-micron) filter for 2.5

hours. The temperature at which the filter plugs (a pressure drop of 3.3 kPa (25 mm

Hg)), or at which the deposits on the heater tube become darker than a light tan, is

known as the breakpoint temperature. The present specifications require a minimum

temperature of 260°C (500°F) when operating at 3.45 MPa gauge (500 psig).

The CRC Coker and JFTOT test times are of the order of hours, at temperatures

well above those to which a fuel system component is normally exposed, except for

perhaps the injection nozzles themselves. _ese temperature and time ranges have

been selected for practical reasons, since otherwise the sample of fuel under test

would be too large should the test proceed for periods of several days. The test
temperatures are then selected sufficiently high to obtain detectable results.

The formation of deposits, varnishes and lacquers at ambient or intermediate

temperatures are perhaps better represented by the _pecification for allowable gums,
which ASTM D 1655-81 sets at a maximum of 0.07 kg/m (7 mg/100 mL), described in

specification D 381. This specification was developed to characterize storage

stability of a fuel, rather than the thermal stability. Present refinery practices

must comply with other Jet A fuel specifications, such as odor improvement, sulfur

reduction, organic acidity, color, gums and aromatics. On achieving these goals,

experience has shown (see ref. 13) that the fuel stability specifications are

automatically satisfied; and if for some reason an unusual jet fuel happens to be

beyond the thermal stability limit, it is sold instead as heating fuel. Thus, in

spite of the importance that thermal stability has to aircraft engine and fuel system

designers, refineries presently have to worry little, if at all, about meeting the
specification.

4
4

From the extensive effort conducted during the past twenty years in investigating

the cause and nature of thermal and storage instability, it is realized that the

phenomena, although very complex, are all related to fuel auto-oxidation (ref. 14).

The oxygen is present in the fuel in two forms: a) chemically bound oxygen, and b)

dissolved oxygen. The chemically bound oxygen occurs usually in the form of

hydroperoxides. These compounds are unstable, but at ambient termDeratures they may

remain in the fuel for long periods of time unless they are exposed to light and/or

to traces of some metals (copper or vanadium have been shown to accelerate

auto-oxidatlon). At the higher temperatures encountered in aircraft fuel/oil heat

exchangers, fuel control components, manifolds and injection nozzles, auto-oxidation

can proceed at a much faster pace. Whether one is concerned with storage stability
or thermal stability, the formation of deposits has always been correlated with the

onset of fuel auto-oxidation. These deposits do not necessarily result from the

products of auto-oxldation themselves, but rather it is believed that the presence of
the free radicals triggered by auto-oxidation are directly responsible for the chain

of reactions leading to the formation of sediments and deposits. An examination of

these deposits has shown that their hydrogen/carbon ratio is lower than that of the

fuel, and that the content of heteroatom compounds, i.e., oxygen, nitrogen, and

sulphur, is much higher than the average fuel content of those elements. This

suggests that the resonance stabilized free radicals derived from auto-o×idation are

more reactive with heteroatom compounds and unsaturated hydrocarbons. Quantitative

analyses have also shown that the dissolved oxygen participates very heavily in the
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advanced stages of the oxidation process (see ref. 15). In brief, the formation of

sediments and deposits may proceed along the following li_Les. After an induction

period (nucleation) auto-oxldation commences on a series of active centers

: distributed on the fuel system surface, as well as in the bulk of the fuel. In the

case of thermal instability, and taki,g into account that most of the heat transfer

into the fluid occurs by heat conduction through the surfaces, it is improbable that

the active centers in the bulk of the fuel will significantly contribute to the

deposits; the phenomenon is clearly of a boundary layer type. The traces produced by

this first stage of auto-oxidation are still soluble in th_ fuel, and may d_ffuse

i throughout if the residence time is sufficiently long; they may remain in a thin

diffusion boundary layer near the wall if the flow velocity is sufficiently high.

Further oxidation, in which even the dissolved oxygen may participate, results in

products which are no longer soluble and appear in a solid phase as a sediment.

Current engine trends show that in the future, higher efficiency, higher power

density and lower emission requirements are going to come in conflict with fuel

thermal stability, even if present fuel specifications are not relaxed. This is

primarily due to three factors: a) the trend towards higher engine pressure ratios

and consequently higher air temperatures flowing through or about the injection

nozzles; b) tighter tolerances in the spray pattern which make t_.e nozzles more

vulnerable to incipient fouling; and c) the engine manufacturer's desire to take

advantage of the fuel flow to cool the engine oil, and thus redirect the oil heat

back into the engine in an attempt to improve the specific fuel consumption. This

latter approach results in fuel temperatures, at the high pressure shutoff valve,

manifold, and distribution valves, which are sufficiently high to experience (after

continuous operation in tropical climates) unusually high varnish and lacquer

formation rates on those component surfaces. If in addition to engine design trends,

the jet fuel specifications are broadened, it is certain that the thermal stability

could become a most limiting property.

One of the major drawbacks of the CRC Coker and JFTOT is that the behavior of

these Jet fuels in the fuel system and engine is not represented by laboratory tests.

There is underway a considerable amount of work in this area, supported by NASA, the

Air Force and the Navy, with the general objective of closing the gap between the

laboratory results and the fuel system design criteria. These efforts (ref. 16)

consist of modified laboratory tests under boundary conditions which approximate

those used in the fuel system. Other efforts (ref. 17) include fuel systems

; simulators provided with sophisticated instrumentation rigs able to capture deposits
for further laboratory analysis.

: For the purposes of this study, the fuel stability will be represented by the

JFTOT. A review of the literature, as well as some of the correlations attempted for

a variety of petroleum, shale oil and coal-derived fuels, has not shown a definite

range where the JFTOT breakpoint temperature would fall. This is mostly due to the

lack of current experience in present fuels. Assuming that future Jet fuel will have

a strong naphthenic base (such as the Alaskan North Slope crude), and that an extreme

situation could be incurred in which a diesel type fuel could be considered for

utilization as a Jet fuel, a JFTOT breakpoint of 204°C (400°F) was Jointly agreedf

upon by NASA and Lockheed for consideration in this study. It is understood,

however, that this is a severe relaxation from the present 260°C (500°F)JFTOT
specification and it is much below the 237°C (458.6°F) recommended for the ERBS

specification.

38

- ®1

1985010866-047



4.2.3 Aromatics. - ASTM D 1655-81 sets a maximum limit of 20 percent by volume

for aromatics. Up to 25 percent is permitted, provided that the supplier notifies

the purchaser of the volume, distribution and aromatic content within 90 days of

shipment• An increase in aromatics in a fuel increases the radiant heat transfer

from the flames in the combustor to the liner and reduces combustor llfe. A study of

the impact on the combustor when relaxinE the specification limits is beyond the

scope of this effort, and the primary interest here in connection with aromatics is

their deleterious effect on certain elastomers and other nonmetallic materials which

are used icL seals, membranes and filters throughout the fuel system.

It was found in ref. ii that the aromatics content is a dominant controlling

property, and its relaxation is expected to affect refinery output. The ERBS does

not recommend any specific value of aromatics but requires that it be determined by

test and reported by the refinery. There are reasons to believe that in the near

future, and more so towards the turn of the century, the aromatics content in fuels

will increase considerably. This projection is based on the fact that the present

trend in refineries towards the processing of heavier distillate fractions makes use

of catalytic, thermal, and hydrocracking, and results in the formation of a high

content of aromatics, which are then brought down to specification limits by hydro-

processing• This is the reason why some refineries are already ha_ing difficulty in

supplying jet fuels with aromatics content below 20 percent. In the future, however,

if shale oil and coal become important sources for jet fuels, hydrocracking will be

practiced in a much larger scale, resulting in substantially higher aromatics
contents. It is obvious therefore, that a modification in aircraft fuel systems,

allowing for the utilization of high aromatic fuels, will have a most significant

impact on fuel cost, energy savings and fuel availability. For this study a 35

percent maximum content in aromatics was selected for the purpose of studying the

fuel system materials compatibility• This figure appears to be represe" _ative of

refinery outputs that may be experienced before the turn of the century.

• 4
4.2 4 Viscosity. - Kinematic viscosity is related to the ability of the fuel _

system to pump the fuel and deliver it to the engine. The kinematic viscos½ty for
Jet A fuels is defined by the D 1655 specification to be not moregthan 8 mm /s (8
cSt) at -20°C (-4°F). The ERBS recommends its new limit at 12 mm_/s (12 cSt) at

-23.3°C (-IO°F). The present specification freezing point of -40°C (-40°F),

translates into a 20°C (36°F) margin above the freeze point for measuring the

viscosity. In the ERBS the viscosity measurement temperature equals the freezing

point. Fuels may still be chilled below the freezing point before their flowability

Is severely impeded (pour point). The difference between the freezing point and pour

point varies from less than I°C (I.8°F) up to IO°C (18°F) depending on the type of

fuel. It is felt here that better reproduclbility in measuring the viscosity can be

accomplished if the freezing point is well below the measurement _emperature for
viscosity. For example, the viscosity could be specified as 9 mm /s (9 cSt) at -8°C

(17.60F).

For the present study, however, it was proposed that the viscosity be relaxed

even further in order to explore the ability of the fuel system to pump fuels that

are heavy in aromatics and napthenics _ith distillation fractions as heavy as diesel
fuel No. 2. A limiting value of 15 mm /s (15 cSt) at -17.8°C (O°F) was therefore

selected, which ensures that the fuel is in a liquid state when its viscosity is
measured.
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4.2.5 Lubriclty. - This property is the ability of a fuel to minimize friction

and wear between moving adjacent surfaces in fuel system components. When two solid

surfaces slide over one another, the friction coeff, cient between them can be

dimJnished by the introduction of a liquid film. As the two surfaces are brought

closer by applying a normal load, the liquid film is squeezed out at a rate which Js

a functlon of its viscosity and surface tension. As long as the thickness of this

film layer _s above 0.5 or 0.6 pm, the sarfaces are said to be hydrodynamically
lubricated and the friction coefficient is independent of the film lubricity. When

: the film becomes thin to the point that it reaches less than 0.I _m (I000 angstroms),

the molecular structure of the film (as well as the solid surface texture and atomic

structure) become most d_mlnant in determining the friction coefficient. Tn the

extreme event that both surfaces become locally in contact, they heat locally and

melt, resulting in progressive wear. This regime is known as solid friction or

partial fluid friction. The thickness of the film layer depends on the normal load,

the relative speed between the surfaces, the degree of surface finishing, and the

concentration of polar molecules in the liquid.

Lubrlcity as a jet fuel property is not covered by present specifications, but in

those cases where the jet fuels are produced by intense hydrotreating, or whose

contaminants have been separated using clay filters, the lubrlclty has deteriorated

to the point of causing isolated but important cases of accelerated wear in the fuel

pumps, particularly those using sliding piston-cylinders. Hydrotreatlng appears to

reduce the number of functional groups in the polar molecules or their length, thus

reducing the lubricity of the fuel.

In those cases where poor fuel pump lubrlcity has been detected, it was found

that a corrosion inhibitor additive would resolve the situation. The problem would

also disappear when the steel cylinder sleeve was replaced by a highly carbon-treated

steel. Since unusual amounts of corrosion inhlbitors are incompatible with free

water removal methods, it is more desirable to cha_Ige the materials of the fuel pump

than to employ additives.

It is suggested in ref. 18 to utilize the Wear Scar Diameter (WSD) as obtained in

the Ball-On-Cyllnder Machine (BOCM) as a method and specification for ranking Jet

fuels according to their lubricity. The ability of this method to correlate fuel

lubriclty with fuel pump llfe will have to be determined by testing, but the method

seems to be able to distinguish between fuels provided with different lubrlclty
additives.

Y It is consistent to assume that jet fuels with a higher end boiling point, from a

broad spectrum of crudes, will have a tendency to exhibit better lubricity. It is

also conceivable, however, that those occurrences encountered in Europe, where

lubrlcity w_. affected adversely because of intense hydrotreating (see ref. 19),
could become a trend in the near future, in which case a lubrlclty standard may be

necessary. As suggested in ref. 18, a WSD of 0.45 mm could be representative of a
marginal fuel lubrlcity, requiring special component design considerations.

4.2.6 Water separation. - Before a fuel Is delivered by the supplier, the

water is separated from the fuel by decantation and solvent extraction. In theory,

water is not soluble in hydrocarbons, but the presence of the functional groups and

peroxides retain water molecules dissolved in the fuel. The higher the molecular

weight of the fuel, as well as the higher the number of branches and naphthenic and

aromatic compounds, the larger will be the traces of polar molecules in the fuel, and

|
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consequently, the higher water solubility. The capacity of a jet fuel to dissolve

water by means of such surfactants is detrimental to the fuel system, as an increase

in the number of ice particles is expected in the fuel at low temperatures, which

could in this manner affect filter matrices and produce wear in the pumps. The

requirements on the concentration of surfactants for water separation and lubricity
are in conflict and need to be compromised.

4.2.7 Electrical conductivity. - From the point of view of aircraft safety, a

fuel with adequate electrical conductivity will prevent electrostatic discharges in

the fuel tank (localized sparking). The triboelectrlc charge separation, occurring

at the interface of a fuel and a solid surface, becomes evident when the fuel is in

relative movement with respect to the dielectric solid surface. Electrostatic

discharges in the fuel can cause a fire hazard. Aircraft Jet fuels sometimes use

antistatic additives to improve the fuel conductivity and eliminate the fire hazard.

A limit of 50-450 picosiemans per meter (pS/m) applies when an electrical conduc-

tivity additive is uged. Relaxing the end boiling point of a Jet fuel will result in

higher water solubility and therefore in a higher initial electic conductivity.

Relaxing the front end of the distillation curve has, however, the opposite effect.

The amount nf additive required in different cases Ks variable and impacts the cost
of fuel del_vered to the aircraft.

4.2.8 Flash point and vapor pressure. - The flash point is the temperature at

which a fuel exposed to air will form an ignitable mixture. This temperature does

not guarantee sustained combustion of the fuel, but only an initial flash after

ignition. This property is important because it is related to aircraft safety and

to engine re-light at altitude. Because of it_ relation to the volatile fraction of

the fuel (initial boiling point), it is anticipated that the flash point will be no

lower than the present D 1655 specification limiting value of 37.8°C (100°F). The

flash point is determined primarily by the front end of the distillation curve. This

fraction is presently at a premium in the fuel market for the manufacture of

gasoline. According to the refinery industry in the future there will be a decrease

in gasoline demand, and this could release large amounts of the volatile fractions.

As to whether 3uch an assumption is reasonable or not the concern is reflected in

the present study by extending the range of availability of Jet fuel on both ends of

the distillation curve. To this end a flashpolnt of 27°C (80.6°F), which is well

above the flash point of Jet B fuel, was agreed upon with NASA for this study.

The vapor pressure is closely related to the flash point in the sense that at a

given temperature the partial pressure of vapor fuel, in coexistence with the liquid

phase, is determined by the distillation curve (primarily by the front end). In Jet

fuels this property is given in terms of the Reid vapor pressure as measured by

specification D 323. The present specification for Jet A fuel has substituted the

flash point for the Reid va_or pressure limit. Jet B and JP-4 fuels use instead the

vapor pressure to specify the volatiles. This property is related to the tendency of

the fuel to form combustible vapors and lose volatiles through fuel air vents at high

altitude. ASTM D 1655 specifies a limit of 13.8 to 20.7 kPa absolute (2 to 3 psia)

for Jet B. In accordance with the flash point value of 27°C (80.6°F) selected above,
the vapor pressure considered in this study will be assumed to be less than 13.8 kPa

absolute (2 psia).
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4.3 Summary of Fuel Propertles Selected for Fuel System Analysis

The property limiting values discussed in the previous paragraphs and _plp_ted

for use in this study are summarlzed in table 4. These properties do not reflect a

real fuel, but bracket the range of variation whlch would be spanned when considering

relaxation of jet fuel properties in an effort to increase its availability, lower

costs and provide energy savlngs.

TABLE 4. FUEL PROPERTIES SELECTED FOR FUEL SYSTEMS ANALYSIS

Freezing Point, °C (°F) - 20 (-4)

Thermal Stability, JFTOT, °C (°F) 204 (400)

Aromatic Contents, % _oi. 35

Viscosity,mm2/s (cSt) at -17 8°C (O°F) 15 (15)

Reid Vapor Pressure, kPa absolute (psia) 13.8 (2)

Flash Point, °C (°F) 27 (80.6)

Lubriclty, WSD, mm 0.45

_'i 42

1985010866-051



5. _N_.YSIS OF IMPACT OF PROPERTY CHANGES ON BASELINE AIRCRAFT

The following sections discuss the analysis conducted to determine the impact

each of the previously defined fuel property changes has on the operation of the
baseline aircraft.

5.1 Freeze Point

Fuel temperature surveys to determine the maximum freeze point to be allowed for

specification fuels have generally been applied to bulk fuels. Below the freeze

point temperature, there is the possibility that the free flow of the fuel will be

impaired causing loss of fuel availability from the fuel tanks, excessive pressure

drop in fuel lines, and possible malfunction of fuel metering controls where tight

clearances between moving surfaces are encountered. However, bulk fuel temperature

does not adequately represent the significance of freeze point in the aircraft and

engine fuel systems. Of far greater significance is the temperature of the fuel

immediately adjacent to surfaces which are in contact with the cold slipstream air

and which will be significantly below the bulk fuel temperature. In this section,

the characteristics of a thermal model which was developed to generate temperature

profiles in the L-lOll fuel tanks, the method of model verification, and the fuel

temperature-profiles developed through use of the model are discussed.

5.1.1 Fuel tank thermal model. - To estimate fuel temperatures in the baseline

aircraft fuel tanks, a computerized fuel tank thermal model was developed. Separate

versions of the model were created for Tark 1/Tank 3, Tank 2-inboard, and Tank

2-outboard. The primary inputs to the model are initial fuel temperature and curves

of ambient temperature, ambient pressure, Mach number and fuel quantity, all as

functions of time. The model gives as outputs the bulk fuel tempccature and the

temperature of the fuel tank's bottom surface as a function of time. The temperature

of the bottom surface of the fuel tank is of primary importance because thi_ is the 4

first location at which fuel freeze-out is likely to occur.

The fuel tank thermal model developed for the stJdy is essentially one-

dimensional, primarily treating heat transfer in the vertical direction. The

assumption is made that there is no thermal gradient within the upper and lower tank

surfaces nor within the fuel in the horizontal direction. Using the one-dimenslonal

approach, the model gives average temperatures for bulk fuel and for tank structures.

the thermal analyses include the effects on cooling rate of v_rlous tank internal

structural members, variable wetted surface area, radiation from unwetted surfmces,
and fuel transfer from other fuel tanks.

In developing the fuel tank thermal model, the most difficult task was
the determination of convective heat transfer coefficients both within the fuel and

on the external tank/wing surfaces. Empirical relations were used to estimale these

coefficients and then in some cases, practical adjustments were made to achieve

correlations with flight test measured temperature-time histories. Two important

conclusions were reached during this process: (I) the predicted temperature of the

fuel in the wing tanks of the L-IOll tends to reach the boundary layer air tempera-

ture durin$ a long flight regardless of the internal and external convection coef-

flcients used, and (2), the heat input to the fuel tank required to prevent fuel

freezing depends primarily on the external convection coefficients.
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The fuel tank thermal model was developed using the Lockheed thermal analyzer

program as the basic tool. Using this program, the solution to transient heat

transfer problems is effected by converting the three dimensional physical system

into an analogous electrical network of lumped thermal capacities (small volumes with

essentially uniform temperature) connected by thermal resistors. The resistors may

represent heat transfer by convection, radiation or conduction. Transient

temperature histories are computed u_ia_ the lumped-parameter, or finite-difference

approach by applying Kirchhoff's law at each lumo _node) of the R-C

(reslstor-capacltor) ele_trlcal analog network. By specifying any quantity as a

function of any other, it is possible to include the effect of various nonlinear

parameters, e.g., variable thermal properties and arbitrary boundary conditions as a

function of time and/or temperature.

The development of the fuel tank thermal model can be divided ir_to three parts,

modeling of tank structures modeling of external heat transfer, and modeling of
internal heat transfer.

5.1.1.1 Modeling of tank structures: In the integral wing tanks of the L-lOll,

th= structural components which contribute most signlfica_tly to heat transfer are

the upper and lower wing surfaces, the stringers, the ribs, and the =pars. Of these,

the most dominant heat transfer contribution is made by the upper and lower wing

surfaces. These surfaces have the largest convection areas, the shortest conduction

lengths, and provide the most direct heat transfer paths from the fuel to the

freestream air. High convection rates exist in the vicinity of these surfaces both

on the fuel side and on the freestream air side. The stringers and ribs have a

significant effect on heat transfer because they act as fins adding convective area
to the wing surfaces inside the tank. For example, in one location of the L-1011

fuel tanks, the stringers have the effect of adding 41 percent to the surface area.

The wing spars which form the fore and aft boundaries of the fuel tanks have a less

pronounced effect on heat transfer than the structural elements previously discussed.

This is due to the low air velocities in the wing cavities adjacent to the spars
forward and aft of the tank boundaries, and to the spar's relatively small convective

areas. The heat transfer through the spars which does occur is primarily the result

of convection from the fuel at the vertical spar surfaces and conduction through the
spar structure to the upper and lower wing surfaces.

Figure 19 shows a general thermal analyzer R-C network representing a

section of the lower boundary of the fuel tank. In the model, this network is

simplified to the equivalent network shown in figure 20. The heat paths through the

various structures are computed using average values for the structural dimensions so

that this network represents a typical section of the lower boundary rather than a

specific location. An identically structured network is used to represent the upper

tank boundary wlch conduction resistors computed using the appropriate average

structural dimensions. These boundary networks allow the separate determination of

average temperatures in the surface, the stringers, and the ribs. The effect of heat

transfer through the spars is not treated directly but is included with that

through the upper and lower tank boundaries.

For use in a later section of this report, figure 21 shows the R-C network for

the lower boundary, modified to account for the presenc_ of insulation. The R-C
networks shown in both figure 20 and 21 can be used to model the addition of electric

loll heating. This is accomplished by adding a heat input into the heat balance
calculations performed at nodes a, b, and c.
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Figure 19 - General thermal analyzer R-C network
for fuel tank lower boundary.
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I
Figure 20 - Simpllfled scheaatlc of wing fuel tank lower surface model.
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Figure 21 - Simplified schematic of wing fuel tank
lower surface with insulation.

5.1.I.2 Modeling of exte,qal heat transfer: For the integral wing tanks of the
baseline aircraft, the upper and lower surfaces of the wing form the respective
boundaries of the fuel tanks. The external heat transfer from the fuel tank_

therefore consists of convection from the wing surfaces to the boundary layer air

stream and radiation from these surfaces to the surrounding environment.

The convective heat transfer falls into the well documented regime of forced

convection. In the modcl, average convectlon coefficients were compute( separately
for the upper and lower surfaces of the wings. These coefficients were computed

continuously throughout a simulated flight using flat plate relationships. Because

the leading edges of the fuel tanks lie beyond the point of tranststlon to turbulent
flow, turbulent flow relationships were used. Average values of pressure coef-

ficients were estimated for the upper and lower wing surfaces near the center of each

fuel tank using flight test data measured under cruise condlctor_. These pressure

coefficients were u_ed in the model with free stream pressure and velocity to compute
average values of local pressure and velocity. The local pressure and velocity were

used with the air film temperatuce and the tank's position in the wings to compute
the average convection coefficients.

R_diation heat transfer between the wing surfaces and the sky and ground are
accounted for in the model as is solar radiation to the upper surface. Compared to

the convective heat transfer, the contribution o_ radiation is relatively minor. The

variables affecting radiation are the emissivity and absorptivity of the surface, the
ground and sky temperatures, and the upper and lower surface te=peratu_es. An
emissivity of 0.18 was used in the model for the wing surfaces. This value corres-
ponds to unpolished and unpainted aluminum. A corresponding absorptivity of 0.50 was
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used for the upper wing surface in computations of solar heating. A ground

temperature of IO°C was used for the validation flight cases in which the actual

ground temperature was not recomded. For the contract missions, the ground tem-

perature used is that given by the appropriate mission temperature profile shown in

Section 3.2. The sky heat sink temperature is assumed to be -273°C for all cases.

Solar heating of the upper wing surface was considered in the valldat_on cases. For

the contract missions, however, solar heating is not considered so as to produce the

lowest fuel temperatures which would occur at night.

The upper and lower surface temperatures were computed by the model using heat

balance calculations which include the previously discussed modes of heat transfer

pl_s heat transfer within the tank.

5.1.1.3 Modeling of internal heat transfer: The model of the interior of the

fuel tank considers the variable heat capacity of the fuel and heat transfer from the

fuel to the inner tank structure by convection and radiation. In addition, the model

considers the effects on fuel temperature of fuel transfer from other fuel tanks.

The entire heat capacity of the fuel is treated as a single thermal unit. This

method of analysis requires the assumption that all of the fuel in the tank exists at

a single 'bulk fuel temperature" at any given point in time. This assumption is

supported by the limited data obtained in L-1011 flight tests (reference 20). The

fuel temperature profiles in a vertical section were recorded as functions of time.

The results show that the temperature of most cf the fuel within the vertical section

does fall within a narrow range, although the percentage of the total fuel within

that range varies with cooling rate and fuel height. Layers of cooler fuel at the

top and bottom of the fuel remain relatively thin most of the time.

An important consideration in predicting the rate of heat transfer to the fuel is
the area of the tank surfaces in direct contact with the fuel. Since this wetted ;-

surface area varies with thc quantity of fuel in the tank, it will decrease as fuel _4

is consumed by the engines during the flight as will the quantity of bulk fuel.

Heat transfer from the fuel to the colder tank structure consists of convection

_ within the fuel and radiation and convection across the ullage space above the fuel.

While the model consider3 all three modes of heat transfer, convection within the

fuel Is by far the most dominant mode.

The analysis of convection within the fuel is broken down into separat

computations for each ol the main structural components, the upper and lower surface,

the stringers, and the ribs. Only the portions of each of these structures that are

_ actually in contact with fuel at a given time are considered in the computations.

Separate convection coefficients are computed for the upper ard lower tank

structures. The available relatioas for horizontal flat plates were used to estimate

these coefficients. Empirlcal adjustments obtained in correlations of temperature

predictions with flight test data were then made to the estimated coefficients.

Further discussion of these convection coefficients is given in the following
section.

5.1.1.4 Correlation of model _emperat',-e predictions with flight test data: The

validity of the fuel tank thermal model waJ verified tsing flight test data obtained

unde_ NASA contract (reference 20). Flight tes*s were conducted in which time

dependent vertical temperature profiles were obtained for two L-lOll fuel tanks,
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Tank 1 and Tank 2R-inboard. For Tank i, temperature profile data were obtained in

cases where fuel was withdrawn from the tank during the flight and in cases where the

tank remained full of fuel. For Tank 2R-inboard, applicable data were obtained only

for cases in which the task was maiatained approximately 90 percent full of fuel.

The first step in the valldatioa of the fuel tank model was to verify that the

temperature predictions showed the proper trcnds and roughly the proper temperatures.

Figures 22 and 23 show that the proper trends were given by the model in correlations

? of predicted temperature with flight test temperature-time histories. In the

figures, the predicted and actual bulk fuel and lower surface temperatures in Tank I

are shown. Figure 22 gives the results for a flight in which Tank 1 remained full of

fuel, figure 23 for a flight in which the tank was emptied.

The second step in the validation of the model was to make adjustments to the

estimated convection internal and external coefficients to improve the correlations.

The required adjustments were different for Tank 1 and Tank 2R-inboard. Most of the

\ required adjustments were not more than 25 percent of the original values given by

the empirical relations, which is generally within the accuracy of these relations.

However, two cases emerged in which significant changes were required.

The first case in which a significant modification to the convective heat

transfer computation method was required occurred inside Tank i. While satisfactory

correlations of bulk fuel and lower surface temperatures were given by the model for

cases in which the tank remained full of fuel, in all cases in which the tank was

emptied, the recorded temperature of the lu _r surface was found to be higher than

that predicted by the model. Since the thermocouple rake in Tank 1 was in the

vicinity of the fuel pumps, it is hypothesized that warmer fuel from the bulk was

mixed with that near the surface resulting in higher recorded surface temperatures in

this area. Further investigation showed that a good correlation for lower surface

temperature was obtained, for cases in which fuel was withdrawn, by the addition of a 4

local i,ternal convection coefficient used only in the computation of the lower _.

surface temperature. This local internal convection coefficient is higher than the

overall internal cenvection coefficient in order to account for the high degree of

. motion in the fuel in the vicinity of the fuel pumps. Because the higher surface

temperature recorded in the vicinity of the fuel pumps is believed to be a localized

effect, the lower surface temperature _ edictions for the study missions, which are

to be representative of the entire low r surface of the tank, were computed without

the higher local convection coefficiert.

" The second case where a significant modification to the convective heat transfer

computation was required occurred inside Tank 2R-inboard. It was found that a

convection coefficient significantly higher than that given by the empirical

relations was required to obtain a good correlation of both lower surface and bulk

: fuel temperatures with flight test recorded temperatures. This was true for all of

the test flights that were analyzed. The higher than estimated convective heat

transfer to this surface is incurred because fuel sloshing within the tank is more

prevalent in Tank 2-inboard due to its shape and the continual flexing it experiences

because of its position further from the aircraft's center of gravity. Sloshing

within the tank would tend to increase the rate of heat transfer from the fuel to the

: lower svrface by mixing warmer bulk fuel with the colder layer of fuel near the lower

surface. Further investigation showed that a constant value of internal convection

coefficient applied to the lower tank surface of Tank 2-inboard consistently gave

) satisfactory tlme-temperature correlations for all flight tests. For the study
missions, it was premised that the same value of convection coefficient was

applicable.
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Since flight test data are not available for the determination of internal and

external convection coefficients for Tank 2-outboard, it must be assumed that those

determined for Tank 2-inboard are also applicable to Tank 2-outboard. This premise

is justified because Tanks 2-inboard and 2-outboard have similar geometries and

because both are located in the outboard portion of the wings.

Figurp_ 24 through 28 show corrected correlations of predicted bulk fuel and

lower tank skin temperature-time histories with flight test measured results. Figure

24 shows the correlation obtained for Tank i in a flight in which the tank remained

full of fuel. The prediction of the lower skin temperature tended to lead the

recorded temperature during the initial climb and final descent phases of the flight.

This effect is a result of the modeling technique in which all of the thermal mass of

the fuel is treated as a single concentrated homogenous unit. During these periods

of rapid temperature change, a thickening of the temperature stratification layer is

observed in the measured vertical temperature profile accounting for some deviation

: from predicted results obtained by the bulk fuel concept used in the model. A

greater thermal lag actually exists in the vicinity of the lower skin than is

considered by the model. However, during the cruise portions of the flights, a more

pervasive bulk fuel temperature is established in the fuel tank increasing the

accuracy of the bulk fuel concept. The temperature transient observed in the lower

skin temperature between the second and third hours of the flight were caused by a

0.16 drop in Mach number.

Figures 25 and 26 show the correlations obtained in Tank I for two flights in
which fuel was withdrawn from the tank. Again, the tendency of the predicted lower

skin temperature to lead the actual temperature can be observed. The good

correlations achieved in these two cases demGnstrate the validity of the model's

treatment of the changing wetted _urface areas inside the tank as fuel is withdrawn.

The correlation shown in figure 24 for a case in which the tank remained full of

fuel supports the validity of the overall heat transfer analysis but does not

indicate whether the separate heat transfer rates computed for che upper and lower

tank surfaces are properly proportioned. Since the lower surface is the only

significant heat path when the tank is partially filled, the later portions of the

correlations shown in figures 25 and 26 for cases in which fuel was withdrawn sb

the validity of the lower surface heat transfer analysis.

The periodic temperature transients observed in figure 25 were caused by the

aircraft's repeated traversing through a weather front. It is not known what caused

the temperature transients observed in figure 26. It appears, however, that the

recorded temperature profiles tend to approach the predicted profiles toward the end

of the flight where the transients were not present.

Figures 27 and 28 show corrected correlations obtained for Tank 2-1nboard. In

both cases, the tank was maintained approximately 90 percent full of fuel throughout
the cruise portion of the flight. The temperature transients observed in the

recorded lower surface temperature during the first two hours of the flights were

apparently caused by aircraft maneuvers which resulted in mixing of the warm bulk

fuel with the colder fuel layer near the lower surface. In figure 27, the

temperature transient observed in the predicted lower surface temperature at

approximately 4.5 hours into the flight was caused by a change in altitude. As

before, the predicted lower surface temperature tended to lead the measured lower

surface temperature during the rapid change in ambient temperature.
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Figure 24 -- Tank-i bulk fuel and lower surface corrected temperature
correlations - full tank, flight T-1686.
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Figure 25 - Tank-I bulk fuel and lower surface corrected temperature

correlations - emptying tank, flight T-1640.
]
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Figure 26 - Tank--1 bulk fuel and lower surface corrected temperature
correlations - emptying tank, flight T-1676.
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Figure 27 - Tank-2 inboard bulk fuel and lower surface corrected

temperature correlations - 90% full, flight T-1653.
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Figure 28 - Tank-2 inboard bulk fuel and lower surface corrected

temperature correlations - 90% full, flight T-1676.

5.1.2 Fuel tank predicted temperatures. - To determine the impact of the use of

the high freeze point fuel on the operation of the baseline aircraft, predictions of
fuel temperature-time histories were required for each of the three cold day
missions. The fuel tank thermal model discussed in the preceding section was used to

generate these temperature-tlme histories. Using the mission profile data presented
in Section 3.2, including altitude, Mach number, ambient temperature, and fuel

quantity as functions of time, the model gave predicted bulk fuel and tank lower skin

temperature for each of the fuel tanks.

Since it is within the cold fuel layer on the lower tank wall that the first

accumulation of fuel freeze-out occurs, emphasis is placed on the predicted

temperatures of this layer of fuel. Although the fuel tank thermal model actually
gives the temperature of the aluminum structure of the lower tank boundary, this is

very nearly equal to the temperature of the adjacent fuel. In the discussions that

follow, the lower surface temperature given by the model is used to express the
coldest and most critical fuel temperature.

The predicted bulk fuel and lower surface temperatures for the 9260 km (5000

n.mi.) mission are shown for Tank i, Tank 2-inboard, and Tank 2-outboard in

figures 29, 30, and 31, repectively. An initial fuel temperature of -17°C (I.4°F)
which is 3°C above the freezing point of the fuel, was selected for the cases shown

in the figures. The selection of this initial temperature and its effect on the

overall fuel temperature profile is discussed later in this section. The figures

show that the bottom surface temperature is lower than the bulk fuel temperature
throughout most of the flight. The exceptions are i), between the first and second

hour of the mission, a period during which the aircraft climbs through a thermai
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Figure 29 - Tank-I bulk fuel and lower surface predicted temperature -
9260 km (5OOO n.mi.) cold day mission.
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Figure 31 -Tank-Z outboard bulk fuel and lower surface predicted

temperature - 92b0 km (5UO0 n.ml.) cold day mission.

inversion layer built into the ambient temperature profile, and 2), during the

descent at the end ot the mission. In all tanks, the lower surface temperature tends

to approach the recovery temperature.

.- The figures show that the spread between the bulk fuel temperature and the lower

surface temperature is quite different in the different fuel tanks. In Tank 1 which

has a relatively low surface to volume ratio, the temperature spread is relatively

large. In Tanks Z-inboard and Z-outboard both of which have much higher surface to

volume ratios, the temperature spread is much less. For all missions, the bulk fuel

and lower surface temperatures in Tank Z-outboard are consistently lower than the

correspondin_ temperatures in the other two tanks. Therefore, Tanks 2-outboard,left

and right are considered to be the most critical fuel tank in regard to fuel

freezing.

The lower surface temperature-tlme histories in Tank 2-outboard for the 926,

37U_, and 9ZbU km (SUO, 2000, and 5000 n.mi.) cold-day missions are shown in figure

JZ. as expected, progressively lower minimum fuel temperatures are attained as the

mission length is increased. However, the difference between the minimum temperatures

attained in the various missions is not as large as may have been anticipated. This
is due to the lower fuel quantities carried on board for the shorter missions. The

reduced fuel quantity provides less thermal mass in the fuel tank and results in an

increased rate of change in temperature.

The effects of initial fuel temperature on the lower surface temperature-time

histories in Tank 2-outboard are shown in figure 33. For each of the three cold-day

missions, temperature profiles are shown for initial fuel temperatures of -17°C and

55

2J

1985010866-064



. ,%)
7

0

/ ,JfbO _m ,%{H][J_lmk,g_,t' ',,, ,,,,_,on

2 I0 / II ............ q2,_km _qO[7f,m,, gulddaym,ss,on
I

,°

: I

40

1 2 3 4 5 6 7 8 g 10 1"

FILqhllime_hour',

Figure 32 - Tank-2 outboard lower surface predicted temperature -
926, 370/+, and 9260 km (500, 2000, and 5000 n.mi.)

cold day missions.
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+ 15°C. The impact of the initial fuel temperature on the minimum lower surface

temperature varies with mission length from a 6.7°C temperature difference in the

926 km (500 n.mi.) mission to an insignificant temperature difference after the
fourth hour in the 9260 km (5000 n.mi.) mission. The results of this study show that

with a 15°C initial fuel temperature, a fuel with a freeze point of approximately

-29°C would be required for the 926 km (500 n.m[.) mission and a _reeze point of

approximately -37=C would be satisfactory _or the 3704 km (2000 n.mi.)mission.

However, the study results suggest that for the 9260 km (5000 n.mi.) mission, no

freeze point advantage could be obtained by maintaining any reasonable initial fuel

temperature.

5.1.3 Effects on baseline aircraft performance. - The low fuel temperature of

-41°C predicted in the previous section for an extreme cold day (figure 32) is

representative of the minimum temperatures expected with a probability of occurring

one day per vear based upon statistical summaries of data recorded by IATA member

airlines (reference 21). The airlines have experienced little difficulty with these

temperatures while using ASTM D 1655 specification fuels. In considering an increase

in fuel freeze point to -2o°C= it i_ recognized that fuel freeze-out will occur.

Consequently, the changes in the physical properties of the fuel must be thoroughly
understood in order to evaluate the impact of these changes on the baseline airplane

performance.

Although the initial freeze--out occurs at the bottom of the tanks coating the

skin with a thin layer of wax, most of the minute wax particles which constitute

freeze-out remain dispersed In the liquid fuel and rarely affect the aircraft

performance. However, as the freezing process continues, fuel in the form of wax

particles agglomerate and fall to the bottom of the tar_k forming a matrix which traps

additional liquid fuel. The total mass of the wax and trapped liquid fuel can be

many times that of the wax alone. This combination of wax and trapped fuel, referred

to as hold-up, remains unavailable to the engines. In extreme cases, the wax could
block the fuel tank exits rendering large quantities of fuel unavailable to the

engines.

Agglomerated wax particles in the fuel stream can create blockage in scavenge

ejector motive flow filter screens and can slow down the response rate of close

tolerance valves. For components which are normally shut down in flight, the problem

is more acute. For example: in normal operation of the aircraft, the APU is shut

down shortly before takeoff. The APU remains shut down throughout the flJght unless

it is required as an emergency power source. Since the APU compartment and the fuel

lines from the wing fuel tanks are not heated, the possibility of these components

becoming blocked by frozen fuel exists. This occurrence would cause the APU to be

inoperable at the end of the flight and unreliable as an emergency power source in
flight.

On rare occasions, situations arise when it may be desirable to shut down an

engine while in flight but retain the option to restart the engine prior to landing.

An example of such a situation would be the occurrence of a warning indication on an

engine monitoring instrument. In this case, it is likely that the shut down engine

would be restarted prior to landing and held in reserve in case the landing had to be

aborted. If an engine were shut down in flight, the temperature of the fuel in some

of the engine fuel system components would drop very quickly. Thus, the possibility

exists that frozen fuel could block the engine fuel system and prevent the engine

from being restarted.
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In the fuel tanks, small amounts of fuel hold-up could be tolerated as part of

normal operating procedures. This would be true if extra fuel were carried on board

to maintain the required quantity of usable fuel. However, a practical procedure for

predicting hold-up or for measuring hold-up in flight must be developed for this

practice to be feasible. For the present, changes in the normal operating procedures

of the baseline aircraft will be considered to eliminate the possibility of hold-up

in the fuel tanks. For safety reasons, frozen fuel must no_ affect the operatiou of

the other vital fuel system components.

The options available consist primarily of placing restrictions on the minimum

initial fuel temperature and adiabatic wall temperature established by Mach number

and ambient air temperature. Figure 33 indicates tha _ _:_initial fuel temperature of

15°C is not sufficiently high to prevent freezing of the -20°C freeze point fuel even

=or the short range mission, lnitial fuel temperatures higher than 15°C are not

considered practical as a standard requirement for winter operatiop. It is apparent

that for the ambient temperatures considered in this study, a restriction on the

minimum initial fuel temperature would delay but not prevent fuel freeze-out in the

fuel tanks. Of course, restrictions on initial fuel temperature weuld do nothing to

prevent fuel freezing in inoperative engine and APU fuel systems.

The restrictions on the allowable combinations of Mach number and ambient

temperature to pre_ nt fuel freezing are dependent upon the a.:mospheric conditions

encountered in flight. These restrictions can be evaluated in terms of the adiabatic

wall temperature. The adiabatic wall temperature is the temperatare of the boundary

layer air stream adjacent to external surfaces of the aircraft. Since the boundary

layer is the primary heat sink to which aircraft heat is rejected, the adiabatic wall

temperature is very nearly the lowest possible temperature obtainable by any aircraft

component. Radiation to the environment, the other normally considered mode of heat

rejection is nearly inslgnificant under the conditions of subsonic commercial

aircraft flight. Therefore, if the aircraft is operated under flight conditions such

that the adiabatic wall temperature exceeds the freeze point of the fuel, then the

possibility of fuel freezing is eliminated.

For any given ambient temperature/altitude profile, there is a locus of altitude,

Mach number combinations which give an adiabatic wall temperature equal to the freeze

point of _ specified fuel. In figure 34, li. es of constant adiabatic wall tempera-

ture equal to the -20°C freeze point for che study fuel are shown for three ambient

temperature profiles, ISA Day, and the 50 percent and 0.3 percent probability days

discussed in Section 3. Aircraft operation at altitude/Mach combinations on or to

the right of these lines would prevent fuel freezing during flight in the respective
environments.

However, the maximum Mach number allowable at various altitudes is restricted by

both legal and aircraft operating limitations. The maximum Mach number as a function

of altitude for the baseline aircraft is indicated in figure 34 by the dotted llne.

Below 3048 m (lO,O00 ft), the llne indicates the maximum legal calibrated airspeed of

129 m/s (250 kt). Above 3048 m (I0,000 ft), the line indicates the structural

limitations of the aircraft. This Mach limit is valid for all three ambient

temperature profiles since the legal and structural limitations are independent of

atmospheric conditions.

58
.!
!

__. ®

1985010866-067



To preclude hold-up in the fuel tanks, the _ircraft must always be flown at

speeds greater than the minimum Mach number for the atmospheric conditions

prevailing. This capability could be made avaliable to the pilot through use of a

12.0

1962 U.S.std atmosphere_ Z/

100 - 50% probab,htyatmosphere_ V'_

8.0 _03, probab,htyatmosphere.. /_

I

-_ 60

40

20

Math hmJtline 1t7

o x 11 L
0 2 0 4 0.6 0.8 0

Macb number

Figure 34 - -20°C adiabatic wall temperature profiles.

chart relating Mach number (M) to stagnation temperature (T) to maintain an

adiabatic wall temperature eq,al to or greater than the fue_ freeze point. For -20°C

freeze point, the flight Mach number must be greater than

(T + 20. )
M - 0.827- o

(I.0 + 0.123 T )
O

which can be presented in chart form to the pilot. However. this airspeed must never
exceed the aircraft Mach limit llne.

An alternate means of insuring safety of flight under low ambient temperature

conditions is to measure the fuel temperature immediately adjacent to the bottom tank

skin at a point which represents the lowest fuel temperature encountered in any tank.

Although this would appear to be a direct method of indicating to the pilot the

limiting conditions for safe flight, the selection of a representative position which

would apply for all flight conditions and fuel distributions in the tanks is diffi-
cult •

It is apparent from figure 34 that the use of the -200C freeze point fuel in the

baseline aircraft is not practical under very cold condition_. For the 0.3 percent

probability profile, the figure indicates a very narrow envelope between 3048 and

3q62 m (I0,000 and 13,000 ft) in which flight would be possible. Of course operation

of the baseline aircraft at the altitude and Mach number indicated for this ambient
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points would have to be used. If, while in flight, an aircraft encountered such low
ambient temperatures that it was impractical to maintain the -20°C adl_batlc wall

temperature, the aircraft would have to take some precautionary action such as

landing at the nearest available airport.

The use of the high freeze _int fuel in the baseline aircraft is practical under

more temperate conditlo_. Table 5 _hows the percent decrease in fuel economy (in

terms of specific air range) caused by deviating from the optimum flight altitude and

Mach number to maintain the -20°C adiabatic wall temperature. This impact on fuel

economy is given for three temperature profiles. The -20°C adiabatic wall tempera-

ture profiles were selected to maximize fuel economy by using the highest possible

even thousand foot _titude while not exceeding the normal cruise Mach number. The

specific air range values are for level cruise flight at the specified Mach number,

altitude and temperature for a weight of 175 958 kg (388,000 [b). This simpli-

fication does not consider that additional fuel would have to be carried to complete

a given mission using the -20°C adiahatlc wall temperature profile. Note that the

fuel economy percent difference represents instantaneous difference which is valid

only for the cruise _int Mach numbers, altitudes and weight specifled. The fuel

economies a_ percent differences are included only as an example of relative values

for the conditions discussed here, The fuel economy percent differences have no

relation to mission bl_k fuels bera_,se climbs, descents, and amount of time in
cruise _ve not _en accounted for.

TABLE 5 - IMPACT OF HIGH FREEZE POINT FUEL ON PERFORMANCE

OF BASELINE AIRCPAFT

Amb=ent *
Altitude 3emperature FuelEconomy Fuel

Mach (n. mr./ Economy
: Atmosphere Prohle Number Mete, (feel) °C (°F) km/kg Ibm) Percent

1962 U.S a 0,82 10 668 (35,000) -54 (-66) 0.132 (0.0322) -6
Standard b 0.82 9 449 (31,000) -46 (-51t 0 124 (0.0304)
Atmosphere

.o

50% a 0.82 10 668 (35,000) -56 (-68) 0.132 (0.0322) -13
Probabihty b 0.82 8 230 (27,000) -46 (-51) 0.115 (0 0281)
Profile

0.3% a 0.82 10 668 (35,000) -68 (-90) 0.132 (0.0322) -35
Probal),hty b 0.68 3 658 (12,000) -40 (-40) 0.086 (0.0211)
Profile

a-Optimumalt=zud,for weight-175 958 k9 (388.000 Ib),Mach-O.82
b-AIt=tudeandMachnumbernecessaryto maintaina -20°C ad,abatlcwall temperature

oO
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5.2 Thermal Stability

Present jet f,,ets vhich comply with ASTM specifications for thermal stability,

produce ceking ratPs in current fuel systems that are acceptable from the aircraft

opekator's point ot view. The fuel system can be cleaned, if necessary, by flushing
it with approved detergents during the scheduled maintenance program. The criterion

for designing a fuel system aulc tc handle lower thcrmal stability fuels is based on
tie fundamental assumption that these presently tolerable deposition rates are not to

be increased when relaying the JFTOT rating to 204°C.

The coking rates in a fuel system componrnt depend primarily on the fu_l

temperature, wall temperature, fuel flow rates, aud pressure, as well as other
variables unrelated to the fuel system such as fuel composition, contaminants,

exposure to air, etc. Unfortunately. there does not exist as yet a dynamic model for

thermal stability which can accounL for the effects of the environmental parameters

mentioned above. Recent efforts by Vranos and Marteney (ref. 22) under the

sponsorhlp of NASA have resulted in the collection of film deposition rates for a

: variety of fuels, under geometric conditions approaching a fuel system situation.
fhese data were correlaLcd by those authors using Arrhenius plots of deposition-rates

vs. wall-temperatures as shown in figure 35. When operating with Jet A fuel, _be

wall temperatures may on a hot day reach values as high as 135_C (275°F). F om the

figure, the coking rates at this temperature appeaT to be of the order of

I ug/(cm 2 h). For a home heating fuel, suc1_ as the one selected in the figure to

represent a reduced thermal stability jet fue], extrapolation ot the experimental

data to temperatures as low as 840C, would indicate coking rates as high as

i0 _g/(cm 2 h). This temperature is commonly reached in present diesel engine fuel

systems, but there have not been any indications of such a fast deposit build-up. It

appears then that extrapolation of the high temperature measurements of ref. 22 to

lower temperatures should be exercised with great caution. For the purpose of this

study, a reducLion temperature interval will be selected based on the decrease in

JFTOT rather than on the coking rates criterion described above. This interval will

be taken as the differen,'e between the Je_ A JFTOT (260°C) and the low thermal _

\ stability fuel (204_C), that is, _T = 56°C. It is recognized that this interval

could be somewhat higher if properly estimated from coking rate considerations.

In order to assess the impact of utilizing the low thermal stability fuel,

the following method will be applied here:

a) Establish a tolerable maximum fuel bulk temperature in the fuel system when

operating with Jet A. This temperature limit is determined from experience.

• b) Decrease this present limit by an amount equal to the temperature interval

separating the tolerable coking rates of i ug/(cm 2 h).

c) Obtain fuel system component temperature profiles for the thermal stability

limiting flight (hot day, short flight).

d) Compare the profiles obtained in (c) with the new fuel temperature limit

selected in (b). Assess the impact on fuel systems and aircraft operations if the

temperature profiles of (c) are reduced to remain below the new fuel temperature
limit,

In the following, the tank outlet fuel temperature will be presented for the

limiting short flight on a hot day. The fuel system components affected by low

thermal stability will be described, and the temperature distribution throughout the

system estimated. The impact of the low thermal stability fuel on components as well

as aircraft operations is discussed at the end of this section.
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Figure 35 - Coking rates vs. wall temperatures for Jet A and

home heating fuels.

5.2.1 Tank outlet fuel temperature. - A short flight of 926 km (500 n.mi.) on

the hot day profile established for this study, 54°C (!30°F) sea level temperature,

_s the limiting flight profile for low thermal stability fuel. The tank outlet

temperature hlstor> was estimated utilizing the wing tank thermal model described in

5.1.1. The flight parameters were described in 3.2.1 and additional informatlcn _.

relevant to the present analysis was obtained from table 6. The fuel tank bulk

"_ temperatures after refueling were assumed to be 38°C (lO0°F) which is the reported

maximum fuel temperature delivered to aircraft in hot climate airports (ref. 23). In

estimating the tank outlet temperature at takeoff, it was assumed that the aircraft

cleared the ramp two hours after being fueled. Table 7 shows the estimated fuel tank

_" outlet temperature histories throughout the flight. In Tanks i and 3, which supply

Engines i and 3, the fuel cools at a slower rate than the fuel in Tank 2 outboard

which has a higher surface-to-volume ratio. (Fuel from Tank 2 outboard is

transferred to the inboard compartment, and from there to Engine 2, the tail section

: engine). Although the difference between the tank outlet fuel temperature histories

is minimal, the Tank i outlet temperature was selected for the purpose of this

analysis as providing the most limiting condition.

5.2.2 Engine fuel environment. - Thermal stressing of the f,el is most severe on

the engine side of the baseline aircraft fuel system. The engine fuel system was
described in Section 3.1.2 and illustrated schematically in figure 4. In order to

r
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TABLE 6 - AIRCRAFT AND ENGINE PARAMETERS PROFILES FOR THE SHORT RANGE 926 km

(500 n.mi.) FLIGHT, HOT DAY (54°C GROUND TEMPERATURE)

Time From

Segment Mode Take-Off Altitude Macf,No.
min m (ft)

1 acc 0 0 0

2 chmb 0.45 0 0.226

3 acc 0.98 457 (1,50(J) 0.232

4 climb 1.47 457 (1,500) 0.388

5 acc 4.13 3,048 (10,000) 0.420

6 climb 4.84 3,048 (10.000) 0.476

7 chmb 15.87 8,808 (28899) 0.820

8 cruise 24.35 11,887 (39000) 0.820

9 descent 45 10 11,887 (39 000) 0.820

10 descent 57.46 3,048 (10 000) 0.576

11 decel 58.1 3,048 (10000) 0.452

ThrustPer Fuel Flow Per HPRotor Turb,neGas

Segment Engl,Te Engme Speed Ternperature

kN (klb) kg/h (Ib/hr) (rpm) °C (K)

1 164.6 (37.0 7,521 (16,580) 10,050 1818 (1544)

2 146.8 (33.0 7,466 (16,460) 10,050 1818 (1544)

3 133.4 (30.0 7,366 (16,240) 10,050 1818 (1544)

4 89.0 (20.0 4,_08 (10,820) 9,500 1629 (1355)

5 75.6 (17.0 4,518 (9,960) 9,690 1712 (1438)

6 57.8 (13.0 3,946 (8,700) 9,460 1623 (1350)

7 40.0 (9.0) 2,867 (6,320) 9,490 1673 (1400)

8 27.1 (6.1) 2,005 (4,420) 9,440 1690 (1417)

9 26.7 (6.0) 680 (1,500) 8,130 1306 (1033)

10 2.2 (0.5) 871 (1,920) 7,580 1223 (950)

11 2.2 (0.5) 980 (2,180) 7,800 1229 (955)
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TABLE 7 - FUEl, rANK OUTLET TEMPERATURE HISTORIES

Tank I or 3 Tank 2 (Outboard)

t+, .,,ute_ Temperaturc,°C Temperature,°C

0 47.2 41.2

12 47.2 46.7

16 46.7 46.7

18 46.7 46.1

20 46.1 45.5

26 45.5 43.9

28 45.0 43.3

30 45.0 42.8

32 44.4 42.2

34 43.9 41.7

36 43.9 40.5

38 43.3 40.0

40 42.8 39.4

42 42.8 38.9

44 42.2 38.3

46 41.7 37.2

Begmmng "-
of descent

*Time from takeoff
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have a better understanding of the effects of low thermal stability fuels on the

engine performance, the functional relationships and thermal environment of the

various engine components are discussed in this section. Although the engine fuel
feed lines from Tanks I and 3 are significantly different from the Tank 2 feed line

supplying the aft fuselage engine, all of the engines have identical fuel systems

downstream of the png_n_ interface.

In this analysis engine fuel system accessories located in the fan case are

discussed separately from those in the engine core area because of the differing

thermal environments. Installation of the accessories on the fan case is desirable,

since this region is the coolest and can be accessed while the engine is operating.

The fuel system components installed in this region include the LP fuel filter, the

dual LP/HP pump, the two fuel-cooled oil coolers, the fuel flow regulators (including

the feel enrichment solenoid and the starting fuel flow regulator) and the HP shutoff

valve. The core section operates at higher temperatures since it is exposed to the

heat rejected from the HP compressor air and the combustors. The fuel system

components installed in this region include the HP filter, manifold, distribution

valves, and injectors. Ventilation of this region is provided by air bled from the
fan duct.

Once the fuel enters the engine side of the fuel system, its temperature

increases progressively as the fuel flows downstream through different components and

line segments. The bulk fuel temperature in those components located on the fan case

are s]ightly lower than the surface temperature. In the core region the soak-back

heat from the hot section of the engine becomes more intense, while simultaneously

the fuel velocity increases, cadsing a larger difference between the bulk and surface

temperatures. In the following, those components of the fuel system, which introduce

important thermal loads into the fuel system, are reviewed in greater detail.

5.2.2.1 Fuel-cooled oil cooling system (FCOC): The baseline fuel system is "-

designed to improve the engine specific fuel consumption by preheating the fuel while

assuring at the same time that under extreme conditions, the fuel is not overheated

to form varnishes and carbon deposits. To this end, the fuel is utilized to cool the

engine oil, and this results indirectly in a secondary SFC improvement, since it

eliminates the need for an air-cooled oil cooling system, which does have an impact

on installed performance.

• The total heat to the engine oil is approximately a function of the engine speed.

" The baseline engine has three independent concentric rotors for the LP (fan), IP, and

HP compressors. The speeds of the three rotors are coupled aerodynamically within

narrow limits permitting the total heat to the oil to be expressed as a function of

the HP rotor speed only (figure 36).

A schematic diagram of the FCOC can be seen in figure 37. A pressure pumpL

supplies oil from the oil tank, through a high pressure filter and two oil coolers,

and then to the inlet of a second p_essure pump which delivers the oil to the gears

and beariDgs. The oil cooling system is _omprised of the control valves, the low

pressure fuel-cooled oil cooler (LPFCOC), and the high pressure fuel-cooled oil

cooler (HPFCOC). The oil flow path through the coolers is established by the

temperature of the LPFCOC outlet, which determines the position of the control valves

by means of retracting thermal elements. The cold valve element operates between I_

and 25°C, and the hot valve element in the range from 85 to 95°C. If the LP

temperature is below 12°C, all the oil flow is directed through the LPFCOC ¢:._y,

resulting in maximum fuel heating. Between 12 and 23°C, a small fraction of the oil
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flow has an open path through the HPFCOC for increased oil cooling. From 25 to 85°C,

both valves are fully opened and maximum oil cooling is obtained for this temperature

range. When the LP fuel temperature is above 85°C the hot valve begins to close in

order to reduce the LP fuel heating, and above 95°C it is totally closed and the

HPFCOC is the only active cooler. With this control system, the total heat from the

oil is directed to the engine. Notice, however, that an extreme condition is

possible, although rare, where the LP fuel _emperature may be above 95°C, but the HP

fuel still receives the heat input from the oil. The HP fuel temperature could then

approach (130°C) with an attendant increase in oil temperature.

5.2.2.2 Combined low pressure/h_gh pressure fuel pumping system: The fuel is

delivered to the engine nacelle by the wing tank booster pumps. In order to achieve

the full flow rates and delivery pressures which are required for engine operation,

the baseline fuel system is provided with a compact combined HP/LP pum_ system. Both

pumps are mechanically coupled to the HP rotor through the accessories gear box. For

an installation of the unit, see figure 38.

The compactness and structural integration of both pumps result in some thermal

"cross-talk" between the HP and LP pumps. For this reason, the increase in tempera-

ture of the fuel across each pump may be slightly different for steady state and

transient operation. The characteristic temperature increase of the fuel at low

power levels is of the order of 5=C for one pass which, depending on the number of

passes (_s high as 7), could amount to as much as 350C.

5.2.2.3 Main fuel flow regulator: The main fuel flow regulator has delicate

metering air and fuel orifices to accurately schedule the fuel flow rate for every

flight condition. The power dissipation in the unit is negligible and requires

special considerations when the fuel temperature becomes too high.

5.2.2.4 High pressure shut-off valve: The HP shut-off valve is especially 4
sensitive to materials incompatibility and carbonaceous fuel deposits. The valve

functions as a plunger sliding in a cyl_der, and sliding surfaces are highly

susceptible to becomlng sticky when varnishes or lacquers are formed _n their

surfaces.

5.2.2.5 High pressure filter: A single high pressure filter assures that the

small particulates which arc suspended in the fuel will not clog the delicate

passages of the distribution valves and injection nozzles thus guaranteeing an even

delivery of fuel to all of the injectors.

5.2.2.6 Burner system: The baseline engine is provided with a simplex burner

system with a bell-mouth feed arm design (figure 39). The main fuel flow from the

distribution valve is delivered to the spray nozzle, and goes through a restrictor

plug which meters the correct fuel flow for the delivery pressure. The feed arm is

directed radially inwards, and ends in the bell-mouth composed of a swirl chamber

enclosed by a deflector cone and a shroud. Six tangential drillings form a

multipoint injector and produce a spray with an atomization enhancing swirl. The LIP

compressor discharge air has a dual path through the deflector cone support plates

and the radial air feed slots. FigL_re 40 shows the simplex burner system integrated

with the structure of the combustor head, as well as further details on the main fuel

manifold, distribution valve, structural supports, and thermal stand-off distances.

The feed arm is enclosed in a cast steel body, the conductance of which is the only

resistance to heat transfer from the _ air to the fuel flowing within the feed arm.

In those cases where a low fuel flow rate is combined with a high HP discharge
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temperature, the soakback heat to the fuel in the nozzle could create severe

carbonaceous deposits on the tangential drillings. The soakback heat from the
combustor head to the nozzle is less severe because of the protective shields

installed. The injector restricting plug, as well as the distribution valves, are

less sensitive to the soak-back heat becau _'_ of the much cooler temperatures

experienced on the upper plate of the spray nozzles (figure 40).

5.2.2.7 Fuel drain tanks: When the HP shutoff valve is closed, the fuel in the

manifold, distribution valves and pigtail conduits is drained down to the level of

the lowest position injectors, Nos. 9 and I0. With this procedure, the exposure of

fuel for long periods of time to the severe soak-back heat from the core after engine

shut-down, is avoided. The fuel is returned by gravity to the fuel drain tank, which

is a small spherical container located in the fan case region. The tank is provided

with an ejector and a float valve mechanism which rediTects the drained fuel back to

the low pressure pump when the engine is started agein. The float valve blocks any

air in the drain tank from entering the fuel _ystem.

5.2.3 Effect on fuel system components. - When a section of the fuel system is

experiencing a fuel thermal stability problem, the fuel bulk temperature contro!_ the

nucleating rate o_ chemical reactions responsible for the fuel breakdown, while the

component surface temperatures and the fuel velocity control the coking and deposi-

tion rates on the component surface. The increase in bulk temperature is caused

primarily by the thermal loads in the fan case region, wL ie the highest surface

temperatures are experienced in those componento which receive the soak-back heat

from the HP compressor discharge. The fuel flow in the fan case region is charac-

terized by a low velocity, and moderate surface and bulk temperatures. These

conditions are seldom conducive to carbon deposits but may, after many hours of

operation, lead to the formation of films on those surfaces which are desig-ed to

slide or rest in contact with other surfaces. Since the bulk fuel temperature keeps

increasing as it flows through the engine fuel system, the component most likely to

suffer from such effects is the HP shutoff valve. Figure 41 shows the temperature

profiles at the key sections of the fuel system for the short range, hot day limiting

flight. These temperature profiles bare been obtained by extrapolating system

temperatures, measured during the aircraft certification to the hot day profile of

54°C (130"F) sea level temperature specified for this study. The extrapolation

formulae consist of emplricai tquations de_eloped from previous experience. These

temperatures were used to calculate the thermal loads across the componeats for each
engine regime. The temperature increases _ere then added as appropriate to the fuel

tank outlet temperatures reported in 5.2.1. The ground operations from engine start

to takeoff were directly adopted from the extrapolated certification measurements and

attached to the flight profile to complete the aircraft mission.

An inspection of the figure shows clearly that the HPFCOC outlet fuel temperature

(which is nearly the same as the HP shutoff valve inlet fuel temperature) is highest

during taxiing and at the beginning of t descent. The other temperatures in the

fuel system follow the same trend. This result was unexpected, since it had been

reported in previous work (ref. 24) that the beginning of descent was the most

limiting condition. The current data show that groun# operations are more

restrictive (HPFCOC outlet temperature reached between 125 and 128'C during taxiing

and ground Idle).

Experience has shown that valves using sliding surfaceo, such as the liP shutoff

valve and the distribution valves, will be free from film deposits, as long as the

bulk fuel temperature is kept below 135°C (ref. 25). If the manifold inlet fuel
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temperature is allowed to increase up to 150°C, seizure of the fuel metering valves

could occur within 200 hours of engine operation. [f one selects 135°C as the upper

llm[t, (tolerable in present Jet A fuels) _ relaxation of 56°C In this limiting tem-

perature as derl,red in Sectlo,_ 5.2 would result in an upper limit of 79°C. On

insrecting figure 61 it is seen that this new limit would be surpassed by thp NPFCOC

out_et temperature for the whole duration of the flight. The HP fuel pump outlet

temperature would also exceed this limit for the whole flight .zxcept for takeoff and

, climb up to 3048 m (i0,000 ft). The LPFCOC outlet temperature would also be over the

limit during ground and descent, and just below the limit during cruise. The LP fuel

pump inlet and outlet temperatures would be below the limit for the whole fl_ght.

Further examination of the temperature profiles show that the thermal loads from

the oli heat and pumping system a.e indeed the culprits for the increase in bulk fuel

temperature. Notice that the thermal loads are very _Im_lar for ground operations
and flight Idle, and occur d,_rlng those segments of the aircraft mission when the

engine SFC is the hlRhest sad the fuel flow rates are the lowest. At cruise, the

thermal loads from the o11 heat are dominant. At low power level_, the LP fuel pump

contributes 30 percent to the total thermal load. The HP pump load remains nearly

constant during the _oI_ mission and is the lowest (14 percent) of the totql thermal

load.

The heat transferred from the oil to the fuel through both heat exchangers has

been calct,lated _rom figure 41 for the beginning of cruise flight. With the engine

fuel consumption of 2005 kg/s and assuming a fuel specific heat of 2.27 kJ/kgK at the

fuel temperatures indicated In figure 41, the heat absorbed by the fuel is

approximately 58 kJ/s. This represents only 53 percent of the total heat input to

the ell at the cruise HP rotor speed of 9440 rpm as indicated by figure 36. At

takeoff and climb, the ell heat fraction dissipated by the fuel coolers is even
smaller.

The hi_ _ _g rates on thJ surfaces are expected to occur tn those compo-

nents whic_ _, ..aviag the highest surface _emperatures, are exposed to the fuel

with the highest )ulk temperatures. These components are installed in the hot

environment of the core region. The temperature dlstriDutlon along the core for a

hot day is given in figure 42. it is measured at the core surface and [s not

representative cf the HP filter, fuel manifold, or distribution valve surfaces, which

are mounted on the core surface by means of stand-o_f supporting brackets. This

temperature is repres,_n_qtive, however, of the cover plate of the spray fan, as well

as of the temperatures In the neighborhood of _he metering pl of the spray nozzles.

For the purpose of this study, a temperature of 300_C has been selected as being

representatlve of the core reglon.

The burner feed arm is in contact with the EP compressor discharge hot air, and

in steady state engine operation, it can be assumed that much of its structure is at

the compressor discharge alr temperature. This air temperature increases with power

levels and flow rates as shown in table 8. At high power, the fuel wetted surface of

the feed arm is conside ably cooler than the air and is very near th_ bulk fuel

temperature in the distrlbutioI_ valves. If power i_ reduced suddenly (aborted

takeoff), the fuel flow drops drasticall> from 7510 down to 680 kg/h. Since at

takeoff, most of the external feed arm structure is near 600°C, a severe soakbac>

heat could cause the wetted surface temperaturo to be excessive. This high

temperature situation, however, is expected to last o,ly a short time inasmuch as the

feed arm structure is als_ cooled by the low power HP air.
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TABLE 8 - ENGINE COMPRESSOR DISCHARGE TEMPERATURE AND FUEL FLOW RATES

Hot Day

HP COMPRESSOR ENGINE FIrEL FLOW

CONDITLON DISCF_RGE TEMPERATURE, °C _TE, kg/h

Max. Cruise

I0 668 m (35,000 ft), M = 0.82 507 3,067

Flight Idle

i0 668 m ,35,000 ft), M = 0.82 300 679

Max. Climb

3048 m (I0,000 ft), M = 0.5 561 7.085

Flight Idle

'- 3048 m (I0,000 ft), M = 0.5 303 870

Takeoff

Sea Level, M = 0 602 8,562

The thermal environment in the feed arms and the spray nozzle cover plates are

much hotter than the fuel at the manifold inlet. Cooling of the fuel wetted surfaces

is left entirely to the fuel flow itself. Because these components are usually over-

designed, the system has little difficulty in keeping the surfaces within 20 or 40oc
of the fuel bulk temperature, even at the low flow rates encountered at ground and

flight idle. Projections can then be made tha_, as far as the injector surface

temperatures are concerned, the system can absorb a 36°C drop in the JFTOT limit.

This, however, is only an estimate, since there is no available temperature data in

the close proximity of the feed arm, other than the already reported temperature.

Ref. 24 recommends that if a maximum manifold inlet fuel temperature of I02°C is

adopted, a modern high bypass ratio turbofan engiae can operate free from severe

: coking rat_ in the injectors. Referring again to figure 41, it is apparent that

present Jet A fuels would already show carbon deposit_ in the baseline fuel system

nozzles when operating on the selected limiting hot day flight. There is, on the

-. other hand, considerable experience in operating the L-_OII aircraft in hot climates

at temperatures above 30°C. The temperature in the manifold routinely reaches values

above I020C and no nozzle fouling has been Lacountered as yet. This experience

tends to L icate that the simplex burner system adopted for the baseline aircraft

engine is very resistant to nozzle fouling in high temperature operations.

,o 5.2.4 Effect on baseline aircraft performance. - The previous analysis o_ the

effects of operating the aircraft on a hot day and short flights, while using a jet

fuel with a JFTOT rating of 2040C, has shown that: (i) the fuel bulk temperature

would continuously exceed, during the whole mission, the new engineering limit

proposed in Section 5.2.3 of 79°C that must be adopted as a safety margin in order to

prevent the formation of varnishes and lacquers. (2) Ground operation at idle and

; flight idle operetion at the beginning of letdown have been identified as the most

stringent conditions of the mission. (3) The formation of carbon deposits in the

injectors appears to be related to high manifold inlet temperature, and the bulk fuel

temperatures are most prooably within 20 to 40°L of the wetted metal surfaces.
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The results are conclusive. A relaxation of the JFTOT eating down to 204°C would

halt operations of the aircraft, not only in hot weather, but even at ground level

temperatures as low as 20°C because the distri_ ion valves, HP shutoff valve, and

fuel metering devices would almost certainly experience seizure due to the formation

of varnishes and lacquers.

A corollary question is - how much could the present JFTOT rating of 260°C be

relaxed before operating the aircraft in hot weather and short flights become a

problem? The fuel system for the baseline aircraft was designed to take full

advantage of any opportunity for improving the SFC. For this particular design the

fuel bulk temperature at _he manifold inlet is as high as possible without pushing

the practical thermal _.reakdown limit. The formation of varnishes and lacquer3 on

the component surfac located in the fan case, as well as on the distribution

! valves, Is a cumulative process, and its presence is felt after many hours of

operation. How long i takes to detect them depends on no_ often the aircraft

operates in hot climates, as well as the time that the aircraft spends in ground

operations and descent. From this point of view, a statistical approach appears more

reasonable for the analysis, rather than the single most-limiting flight approach
- considered above.

Assume that the aircraft operates 500 hours, servicing routes in a hot climate

(for instance, the Southeast United States summer). It is probable that during this

period the aircraft could be operating at ground temperatures above 32°C (90°F).

Taking 32°C as the ground temperature, down from 54°C used for figure 41, a maximum

value of I07°C is projected at the outlet of the HPFCOC. This is also approximately

the temperature that the fuel shutoff valves and the distribution valves will be

experiencing. If this value is taken as the new practical limit, it translates into
a relaxation of the JFTOT down to 232°C.

The estimated lowest JFTOT breakpoint temperature of 232_C at which the aircraft

could operate for a seqaence of hot days at ground temperatures not gre_ter than •

32°C, must be taken with great caution. Much more work is necessary to pinpoln_ _he

_ coking rates at low temperatures which happen to be the prime culprits of the limits

imposed to the aircraft.

The limits described above refer to slow, long term deposits on the fuel compo--

nents. There are situations where the operation of the aircraft (even for short

periods of time) in very hot climates could induce injector nozzle fouling in a

matter of minutes. For examp]e, after an aborted takeoff, the bulk fuel temperatures

are very high and simultanously the structural member of the feed arm is very hot.

This could result in carbonaceous deposits on the feed arm at a very high rate if the

aircraft is left to idle on the runway shortly aftec the aborted takeoff.

5.3 Aromatic Content

A significant impact of utilizing fuels with altered chemical composition f_om

conventional petrole_,m fuels is the effect on the solvent properties of the fuel.

Since these fuels must come in contact with certain _onmetallic aircraft components
such as seals, hoses, etc, the effect of altered aromatic content of shale and coal

derlved refined fuels must be addressed. The fuel mixture, treated as an orga'Lic

solvent, causes .,.welling of polymers, including plastics and rubber material. Thus, L-
a correlation of fuel solvent action with various polymers provides a useful

_rediction of Jetrimental effects o_ fuel on plastics, elastomers, and other

i polymeric materials.
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The most useful method of predicting _olymer solubility i_ the concept of the

solubility parameter _ The solubility parai_eter is derived from the chemical and

physical properties of a material. In this case, it is a measure of the
compatibility in a given solvent of one material relative to another, or of a given

material in one solvent relative to another. _ne solubility parameter values may be

used to predict solubility (or insolubility) or swelling of polymers in solvents. In

general, solubility or swelling is greatest when the solubility parameter of the

solvent is within 0.5 unit of that of the polymer, and diminishes substantially when

is greater than 1.0 unit from that of the polymer. A few ;epresentative values of

the soluhiilty parameter for some solvents and elastomer materials are shown in

Lable 9. (ref. 26).

TABLE 9 - SOLUBILITY PARAMETERS OF TYPICAL HYDROCARBONS FROM FUEL

Solvent _ Polymeric Elastomers

Iso-octane (aliphatic) 6.85 Natural rubber 8.35

N-decane (aliphatic) 7.75 Polybutadiene 8.45

Benzene (aromatic) 9.15 6una S

Toluene (aromatic) 8.9 85%B 15%S 8.55

O-Xylene (aromatic) 9.0 60%B 40%S 8.0

Neoprene 9.25
Buna N 9.5 - 9.6

Polysulflde rubber 9.0 - 9.4

Applicat on of this principle is seen in table i0, which shows the swell_ng of

natural rubb<r in various solvents. The table shows that the percent swell, Qobs," is
largest when the solubility parameter, _, of the solvent is within + i unit _rom that

of the rubber, 8.35. As the solubility parameter of the solvent deviates further

from that of the rubber, the swelling reduces markedly. 4

With current technology, compositions of fuels can be determined with con-

siderable accuracy by gas and/or liquid chromatography from which accurate values for

solubility parameters may be calculated. A wide variety of polymeric products, such

as seals and O-rings, with varying chemical composition, is available to pro_'ide

desirable seal compatibility with fuels as required. Thus, current commercially

available materials will provide adequate compatibility with fuels having aromatic

f contents to 35 percent. Therefore, polymeric mechanical seal materials may be
selected to accommodate the higher aromatic content.

: 5.4 Viscosity

The viscosity of a fluid is a ,deasure of its internal resistance to motion

impressed upon it by external forces. To the fuel system designer this effect Is of

primary interest in sizing fuel lines and establishing the necessary driving force at

the fuel source to insure that fuel is delivered to its destination at specified

pressure levels and quantities. A less obvious effect, but one of significant

concern, is its effect on heat transfer where fuel becomes the sink for cooling the

englne oil. In an existing design, such as the baseline L-IOll, the fuel line sizes

and components have already been establlshed_ Consequently, the increase in

viscosity can only be evaluated in terms of its effect on existin_ _omponent and
aircraft _rformance.
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TABLE I0 - SWELLING OF NATURe, RUBBER IN VARIOUS SOLVENTS (ref. 26)

(6= 8.35)
Hydrocarbons

% Swell

6 Qobs

n-Pentane 7.05 1.12

n-Hexane 7.3 1.18

n-Octane 7.55 2.34

Benzene 9.15 3.95

Toluene 8.9 4.10

' m-Xylene 8.8 4.15

Mesitylene 8.8 3.25
Limonene 8.5 4.00

Ketones

Acetone 9.9 0.03

Methyl ethyl ketone 9.3 0.71

Diethyl ketone 8.8 1.6

Diisopropyl ketone 7.6 1.9

Alcohols
!

n-Propyl alcohol 11.9 0.02

tert-Butyl alcohol 10.6 0.13

Amyl alcohol 10.9 0.07

n-Hexyl alcohol 10.7 0.15

n-Heptyl alcohol 10.6 0.55 ,

n-Octyl alcohol 10.2 0.85

Nitriles

Acetonitrile 11.9 0.04 "_

Proplonitrlle I0.6 0.06

Capronitrile 9.4 0.70

Benzonitrile 8.35 2.0

Nitro Compounds
Nitromethane 12.7 0.03

Nltrotenzene 9.95 1.15
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5.4.1 Effect on fuel system components. - The fuel system components affected by

increased viscosity include: fuel lines, fuel pumps, heat exchangers in which fuel is

one of the heat transfer fluids, and fuel nozzles. The relaxed fuel viscosity is

compared to ASTM D 1655 JET A commercial kerosene as a function of temperature in

figure 43. The effect of fuel viscosity on component performance is greatest at low

fuel temperatures and is almost negligible at high fuel temperatures.

5.4.1.1 Fuel lines: The effect of fuel viscosity on fuel line losses as

affected by fuel temperatures is illustrated in figure 44 which compares the pressure

drop per meter (AP/L) in two sizes of engine feed lines used in the L-lOll-500

airplane. During cruise, with a fuel temperature of -40°C, the higher viscosity fuel

causes a 250 percent increase Jn pressure drop in the 3.81 cm (1.5 in.) line

supplying fuel to the wing engines and a 350 percent increase in the 5.08 cm (2 in)

line supplying the No. 2 engine. However, at temperatures above i5.0°C (60°F), these

line loss ratios are reduced to less than Ii percent and 14 percent respectively.

5o4.1.2 Fue] pumps: The primary effect of fuel viscosity on pump performance is

a result of the increased discharge pressure required to overcome the increased

plumbing line losses. The centrifugal pumps used as boost pumps in the L-lOll fuel

tanks and at the engine inlet, will experience some reduction in discharge pressure,

fuel flow rate and pump efficiency if a higher viscosity fuel is used. Aircraft pump

manufacturers assume these losses to be negligible. However, a method of correcting

centrifugal pump performance for viscosity has been developed by the Hydraulic

Institute (reference 27). Assuming this method of correction can be applied directly

to the L-1011 fuel pumps, pump performance may be degraded by as much aq 1.5 percent

in output pressure, 4 percent in fuel flow rate, and 17.7 percent in pump efficiency

if tbe higher viscosity fuel Is used in cruise in lieu of Jet A kerosene at -40°C.

5.4.1.3 Heat exchangers: Assuming fully developed channel flow in the fuel side

of the L-lOll engine oil cooler, the film transfer coefficient (h) may be determined

from the following relationship:

0.8 1/3
Nu = 0.0225 (Rn) (Pr)

where: h DH

u k

V DH
R = --
n

PVC
r k

_t

£
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Assuming the flow rate (V), hydraulic diameter (DH) , thermal conductivity (k),
density (_), and specific heat (Cp) are the same for the Jet A kerosene and the

higher viscosity fuel, the effect of viscosity (J) on film transfer on the fuel side
' will be:

7/15
h (high vJs.)/h (Jet A) = [ _J(Jet A)/_ (high vis.)J

This relationshlp is shown on figure 44 as a function of ambient temperature. In

the range of critical fuel temperatures above 93.3°C (200°F), the fuel side heat

" transfer coefficient using the higher viscosity fuel will be down a_proxlmately 12

percent relative to Jet A fuel.

5.4.1.4 Fuel nozzles: The impact of viscosity on the Simplex Pressure Swirl

Atomizer nozzle used in the L-1011 engines is also shown in figure 44. The

comparison is based upon an empirically determined equation for Sauter Mean Diameter

(SMD) of fuel droplets repotted in reference 28:

0.16 0.6 0.22 -0.43

SMD = 4.4_ Wf APf

Assuming the fuel total pressure drop across the 1ozzle does not change and using

compatible values for surface tension (I) and fuel flow rate (Wf) the droplet size
for the high viscosity fuel at combustor inlet fuel temperatures will be

approximately 5 percent larger than those using Jet A fuel.

5.4.2 Effect on baseline aircraf____t_,_formance. - The impact of higher viscosity
fuel in the baseline aircraft performance will be most significant at low fuel

temperatures. As long as the tank-mounted boost pumps are operating, however, the

higher viscosity will not effect engine performance. At sea level takeoff, on a

, -40°C day, the engine fuel flow is 7597.8 kg/h (16,750 ib/h). As_umlng a -40°C fuel,

the pressure at the most critical engine, which is mounted in the aft fuselage, may

be determined from the following equations:

Peng. in = Ppump out - APfuel llne

The aft engine inlet pressures will vary with fuel viscosity and number of

tank-mounted boost pumps in operation as shown in table II.

From the above, it is apparent that the aft engine can operate at takeoff power

with either hlgh vlscosity ot Jet A fuel as long as the tank boost pumps are

operating. With boost pumps inoperative however, the analysis indicates that the aft

fuselage engine could not achieve takeoff power with the high viscosity fuel. A

similar analysis with boost pumps off for the wing engines shows a fuel inlet

o pressure of 83.4 kPa absolute (12.1 psla) at the engine inlet indicating no

compromise in englne thrust using high viscosity fuel. The higher engine inlet

pressure zesults from the short supply lines and pos_tlve fuel head because the

: engines are mounted below the wing tanks.

5.5 Lubricity

Fuel lubriclty has not been a serious problem in the past. However, the trend to

moderate an_ severe hydroprocessing of syncrudes in the future can result in reduced

lubrlcity for aviation Jet fuels. The effects on the baseline aircraft ccmponents

and aircraft performance are discussed in the following paragraphs.
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i

TABLF ii - AFT ENGINE FUEL INLET PRESSURE

Two Pumps OnePump No Pumps

Fuel Ppump,gauge Peng,abs Ppump,.qaugu Peng,abs Pta,k, gauge Peng,abs

kPa kPa kPa kPa kPa kPa

(pslg) (psia) (pslg) (pma) (pslg) (psla)

Jet A 251 7 2689 225.5 242.7 0 17.2
~

(36.5) (39.0) (32.7) (35.2) (0) (2 5)

HtghV,s 248.2 237 9 222 1 2;1 7 0 -10.3
(36 0) (34.5) (32.2) (30.7) (0) (-1.5)

5.5.1 Effect on fuel systems components. - Since most fuel system components

rely on the lubricating qualities of fuel to minimize friction between moving
surfaces in contact witb each other, it is to be expected that reduced lubricity will

result in increased wear with the attendant reduction in component life. In the

baseline aircraft such components include the engine high and low pr_ssure pumps, 4

fuel flow regulator, high pressure fuel shutoff valve, starting fuel regulator, the

airframe tank-mounted boost pumps, Tanks 2L/2R flow proportioaer, and system shutoff

valves. In addition to reduced life for all such components, controls which modulate

the fuel flow in the engine may experience sticking or sluggish operation. This

latter effect has been observed on a J-79 engine installed in an F-I04 airplane which

had been refueled by fuel which had its lubricity reduced by passing through clay

filters. However, the problem disappeared when the same aircraft was supplied fuel

which had bypassed the clay filters. Evidence that the llfe of some of the baseline

y L-lOll fuel system components will be reduced by operation with low lubricity fuel

has been demonstrated by excessive gear tooth and bearing block erosion in the engine

fuel system high pressure pump. Further investigation revealed that the fuel used in

these aircraft had been subjected to severe hydroprocessing. Subsequent design

modifications to the pump increased its life to an acceptable level while operating

with ghe equivalent low lubrlcity fuel.

5.5.2 Effect on baseline aircraft per[ormance. - The lung term effects of low

lubricity fuel on the baseline aircraft is to increase the frequency of component and

system maintenance activities with the attendant cost impact. Of more immediate

concern, however, is the potential results of sluggish or sticking fuel controls.

This could cause safety hazards primarily in takeoff, landing and ground maneuvering

) where quick response to control movements are sometimes required to avoid accidents.
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5.6 Other Fuel Propertie_

5.6.1 Water separation. - Water in the fuel can become a problem if it exceeds

the quantity which will remain In solution. Since its solubility increases with fuel

' temperature, water saturated fuel tdkeu dbo_rd In a hot humid climate can release

significant quantities of free water as the fuel is cooled in flight. As the fuel
temperature drops below the freezing point of the free water, small crystals of ice

are formed which can remain suspended in the fuel for long periods of time. As they

are drawn into the engine fuel system, these fi- ice crystals can block fuel filters

and cause some system malfunctions. However, a I commercial jet transports must be

capable of sustained operation under the most critical conditions for water freeze-

out in the fuel. In most cases, this condition is met by using the engine oil heat

rejection to ensure that the fuel is well above the freezing point of water before

: the fuel reaches filters where ice crystals could block the filter.

A more hazardous condition can be encountered if free water is supplied to the

aircraft through malfunctioning ground equipment. If the water quantities are large

and improperly trained _rews neglect to sump the aircraft tanks prior to takeoff,

large slugs of wa_er can cause loss of engine thrust. A contributing factor to thls

condition can be the use of lubricity additives in fuels when severe hydroprozessing

has removed much of the lubricating quali_es of the fuel. Such additlve_ frequently

act as surfactants which reduce the water removing capability of the ground fuel

supplier's filter/separator equipment.

5.6.2 Electrical conductivity. - the electrical conductivity of the fuel is an

important consideration when evaluating the potential of fuel tank fires while

refueling the airplane. As the fuel is transferred f_om the ground equipment to the

aircraft, an electrostatic charge is picked up by the fuel as it passes through the

, refueling system, especially the ground filter/water separation equipment. Thls :

charge is carried to the aircraft fuel tanks where it is gradually dissipated by
conduction through the fuel to the oppositely charged airframe. Since charges which

are driven to the fuel surface are no + neutralized by airframe charges, a surface

" voltage difference between the fuel surface and upper wing skin develops. If this

surface voltage exceeds the breakdown _oltage in the ullage space, a spark discharge

occurs which can ignite combustible fuel vapors causing an explosive reaction.

If the fuel conductivity is high enough to cause a rapid charge relaxation, the

fuel surface charge does not become a potential ignition source. Consequently, a

considerable effort is expended by the fuel handler and aircraft operator to insure

that the fuel conductivity is at a safe level.

Fuels produced from shale and syncrudes will oe s_bjected to severe processing in

the refining operations to remove molecular nitrogen and excessive sulfur. If them

processing removes most of the polar compounds, it could reduce the electrical

conductivity level to a point where static discharge could become a serious hazard.

From a safety point of view, this condition would not be tolerated. Consequently,

anti-static additives, which a_e readily available, would become mandatory.

5.6.3 Flash point and vapor pressure. - Relaxation of the flash point and

increasing the vapor pressure of commercial Jet fuels can provide a significant
increase in Jet fuel availibillty. Because sucL changes can increase the possibility

of fire, the industry has evidenced a great reluctance .o relax these p, erttes.
Increasing the vapor pressure can also result in fuel boil-oft losses Lt is

probable that contemplated cha_iges in these properties would be t;ell within the
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present limits of ASTM O 1655 Jet B fuel. Since ,host commercial jet fueled aircraft,

includ_;_g the L-IOII, have been certified to operate with Jet B fu, I, none of the

fucl system components would be affected by the chatlge.

Jet B fuel vaporizes more readily than Jet A and forms a combustible mixture from

approximately ll°C down to -28°C at sea level under stable conditions. However,

under dynamic conditions, the lower flammability limit can extend to -65°C. Jet A

fuel, which is less volatile than Jet B fuel has a combugtible range from 84°C down

to 41°C under stable conditions and down to 50C under dynamic conditions. It is

apparent that the present combustible range of Jet A fuels under stabl[zed coditions

has a minimal overlap with normal operating tenperatures. Increasing the vapor

pressure would increase this overlap with the attendant increase in fire hazard.
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6. CONCEPTUAL DES Iv_IS

This section provides a discussion of the modifications at could be made to tho

baseline aircraft's fuel 3ystem to pcrmi_ the airc aft to operate with relaxed fuel

properties at the critical environmental condition. Of the eight fuel property

changes dJscussed in the preceding section, only two require that major modi[icetlons

be made to the baseline aircraft design to avoid operational limitations in the

extreme environments. These are; i) the increase i_ freeze point to -20°C for

operation in a cold environment and 2) the decrease in thermal stability for

operation on a hot day. Minor modifications may be required to accept fuels wit_ the

proposed changes in aromatics, viscosity, lubricity and water separation. Electrical

conductivity, flash _oint and vapor pressure changes are not expected to require any

changes to the baseli_,e aircraft design. Accordingly, the major emphasis in this

section will be conceptual design modifications which can accommodate the higher fuel

freeze point and the lower fuel breakpoint temperature. Several alternative

approaches are discussed. The more promising of these are evaluated in terms of

their impact on aircraft performance. Each concept was evaluated on the basis of its

effect on block fuel weight, increase in t_.keoff gross weight (TOGW), and percent

increase in specific fuel consumption (EFC). Finally, several reco_endatioas are

offered.

6.1 Freeze Point

6.1.1 Description of candidate systems. - The use of the proposed -20°C freeze

point fu_! requires modifications to the baseline aircraft to prevent fuel freezing

in the fuel tanks _nd to control fuel freezing in the fuel distribution system.

Systems for the prevention of freeze-out by heat addition in the fuel tanks and

distribution system with and without insulation are discussed in the following !
sections.

6.1.1.1 Fuel tank heating without insulation: One means of preventing fuel

freeze-out is to heat the fuel by an amount sufficient to compensate for the aero-

dynamic cooling. There are several possible sources of heat for the fuel tanks.

These include; engine exhaust heat, e'gine bleed air, engine oil, and electric

power. The advantages and disadvantages of most of these heat sources have been

considered in previous studies (ref. 29) and therefore will not be discussed in

detail in this report. The use of engine exhaust heat has the least impact on the

" engine specific fuel consumption. Its disadvantages a_e the large weight penalty

associated with having a tailpipe heat e_changer and the necessity of a secot,dary

hea= transport fluid to meet safety requirements. Bleed _Jr as a source of heat has

the highest impact on fuel consumption. It has the additional disadvantage of

requi_it_ a bulky alr-to-fuel heat exchanger. Enginu oil would be the simplest and

most natural seleccion as a source of heat. qn=ortunately, _bls heat source does not

have sufficient capacity to prevent fuel freeze-out. The ase of electrical power has

the advantages of haling: i) a lower impact on fuel consumption than t_e use of bleed

air and; 2) a lower Installatlov weight and less complexity than the _se of exhaust

heat. In its present configur_'ion, the electrical system of the L-1011 does not

have sufficient generator capacity ro provide enough heat to prevent fuel freeze-oat

in the aircraft's non-lnsulated fuel tanks, dowever, the electrical system can be
modified to increase its capacity.

Heat can be input into the fuel by either of two _ethods, I) by a b llk fuel

"_ heater located near the center of th_ tan_ dnd _ by heating system which applies

• j
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Peat directly to the Lottom of the tark. The f_r_ t 0_ethod has the ,_dvantage of

stmpllclty. A single, centrally located, heater c-an uqe electric pe.w_-. compressor

bleed air, or e,lgine exhaust energy to heat the {uel. The fuel circula _ on caused by

the existing boost pump scavenger system would tend to maintain a rou L _, u_liform

temperature within the bulk of the fu_l. However, f_lel te_perature prottI_q obtained

in flight tests shew that the fuel near the tank's lower surfaces Is generally much

colder than the bulk fuel. It is In this cold layer of fuel that fuel freeze-out

would first occur.

To prevent freeze-out in the fuel adjacent to the tank lower surface with the

first method, it would be necess_. I_o maintain the bulk fuel at a temperature tha_

" Is considerably above the fuel freeze point. The elevated bulk fuel temperaturp

would result in a higher rate of heat loss from the fuel and correspondingly higher

demand for heat from the fuel heating system.

The second method by which heat can be input into the fuel is to use a heating

system that covers the bot_ ._ of the fuel tanks. The advantage of this method is

_hat it concentrates _he heat in the coldest layer of fuel and results im a more

uniform temperature t_Gughout _he fuel. Natural convecLion produces sufficient

mixing even when the boost pump scavenger system is not c__ratlng. The _osc

important advantage of t_is method, is that it r_quires m'Jch less heat to prevent

fue] freeze-out than the first method. If the tanks: bottom surfaces are ma _tained

at a temperature equal to or sllghtly higher tban the fuel fre.,ze point Ibis is

sufficient to prevent freeze-out In the fu_l tanks. Although the bulk fuel

temperature may drop somewhat below the freeze point during long .'ange flights

because of heat loss th. ough Lhe upper skin, any freeze-out that occurs in the bulk

will eventually drop to the bottom and be melt_:d. Because the bulk fuel temperature

is lower wlth the secono method than with the first, the overall heat loss from tl,e

fuel tank is much lower and the heat input required from the [':el heating system is

considerably less. The large difference in heat requirement between the two l,ethods

favors the bottom surface heatlnN method.

The selection of the tank bottom surface heating method leads directly to the

choice of electric power as the source of heat. The other .ources of heat are

Incompatible with the bottom surface heating method since the27 wo_14 _equtre a large

number of small, Independently controlled heaters. Two tyres of electric heaters
were considere ; linear element heaters and foil heaters. Linear element heaters

have the advar_age of being relatively easy to Install. However, because cold spots

• would occur between the heater _.lements, they would have to be placed rather close

together and would have to be matntatneu at _ higher temperature than foil heaters
which provide the most even heat, are lighter In weight, and can be fit into the

Irregular shapes betwee_ the rfbm and stringers attached to _he tanks, bottom

surface_. Fo_l heaters were selected for use in the recommended system.

The eleccrlc foil heaters incorporating fuel resistant Kapton insulation would be

applied directly to the bottom surfaces of the tanks in the areas between the rlbs

and stringers, Figure 45 shows a typical heater installation. T_e heater sys=e_ for

each tank Is made ,_p of an array of separately controlled panels that cover the

bottom of the tank. Each panel consists of a series of heating elements typically

made up of the area bo_,nded by a pair of ribs in the spanwise direction and as _ny

as five stringers in the chordwlse direction. These heating elements are

" interconnected electrically and controlled as a unit by means of a centrally J,)cated

temperature sensimg device and a fuel sensing device. The temperature of each pan_l

is independently maintained a_ a preset temperature. For thls _tudy, a temperature

" of +_'C _bove the fuel freeze ooint was selected In order to provide a ms-gin for
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Figure 45 - Fuel tank electric foil heaters wlo insulation (for all tanks).

tolerances in the temperature control system. When, as a result of fuel usage,

panels become uncovered by the receding fuel, the uncovered panels are automattcally

cut out of the system to minimize the heat loss and preclude excessive surface
temperatures in the heating panels.

The present electrical system in the baseline aircraft has approximately 101.5

kVA excess capacity to _upply the fuel tank heating system in addition to the normal

aircraft electrical loads under the conditions of the cold day missions. Electrical

: heating power requirements predicted by the fuel tank thermal model indicate a peak

power requirement for the heating system of 270 kVA (figure 46) for the 9260 km (5000

n.ml.) cold day mission. This excessive power requirement is a valid reason for

questioning the selection of a -20°C freeze point. However, the peak power

requirement after 8.5 hours exceeds the available excess capacity for a freeze point

of -30°C (figure 47) and appears to be marginal if extrapolated to -35°C. Therefore,

the -20°C freeze point is retained in this study since the weight and cost systems
are essentially identical for any of these freeze point levels.

Three alternative modltlcations to the electrical system were considered. The

first modification involves replacing the three present 75/90 kVA engine driven

generators with three 175/220 kVA generators. This constitutes a major change in the

L-lOll's primary electrical system and, as such, produces several significant

problems. First, the entire electrical system would have to be extensively

redesigned. Second, the aircraft's new primary electrical system would have to be

requallfled by the FAA, a process which is costly and time consuming. Finally,
limitations on the torque capacity of the engine's generator drive system, tke

structural load capacity of the generator mounting pads, and the available space

inside the engine nacelle may make thls modification practically impossible to
implement.
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The second alternative involves adding an additional generator to each engine.

The three new generators would be dedicated solely to supplying the electrical

requirements uf the fuel tank heating system. This less extensive modification

requires a lea_ complex FAA requaliflcatlon but generally involves the same design

_ difflcult_es previously discussed. In particular, a new generator mounting pad and

either a tandem or remote generator drive system pad must be added to the engine.

The third alternative involves a major change in the engine starting system. The

present pneumatic starting system would have _ be replaced with an electric

starter-generator system with the generator portlo_ of the system dedicated to

supplying the electrical requirements of the fuel tank beating system. A 150/200 kVA

rated SmCo starter-generator, required for eL_g_ne starting, could be mounted on the

existing starter-pad of each engine. In add. ice =- _ouivale_t generator unit would

have to be added to the APU to supply electric power for engine starting. Other

minor modifications include adding two electrical Inve_._rs and the additional wiring
and contactors required by the starting system.

_he use of starter-generators as the electric power source fer the fuel tank

heating system has two major advantages. First, the c'i_ting =tar,=r pad and drive

system are able to provide the required torq_,_ _=paclty a_,_ accept the physical

dimensions of the starter-generator uni_. This greatly simp_fles the implementation

of this modification. Second, becaus_ vhe primary electrical zy-_em ts _.c_ altered

by this modification, FAA requaliflcati_, =_u_J 5= relatively easy. _e only major

disadvantage of this modification is that i_ r=cuires a uha-ge from pneumatic to

electric starting procedures, a requirement that, aL _he present time, would meet

considerable resistance in the airline industry. However, _t is anticipated =hat

"all electric aircraft" technologies will gain greater acceptance by _h= 1990 tlro

period considered in this study. Therefore, of the three sources of electrical

energy considered,the electric starter-generator modification was selected to supply

the electrical requirements for the unlnsulated fuel tank heating system.

6.1.1.2 Fuel tanP heating with insulation: The major disadvantage of the above

system is that it requires such a large quantity of e]ectrlc power that a major

expansion of the aircraft's generating capacity is necessary. Adding thermal

insulation to the fuel tanks significantly reduces the electric power required to

prevent freeze-out. The results of analyses conducted using the fuel tank thermal

model indicate that properly configured fuel tank insulation can reduce the electric

heating loads to a level that is below the excess capacity of the existing ge_eratlng

system. Thus with insulation, the penalties associated with expanding the generating

capacity can be avoided. Insulation is only considered in conjunction with fuel tank

heating because insulation without heating is insufficient to prevent fuel freeze-out
during the cold-day missions.

The results of the thermal analysis led to the definition of two alternative

configurations which employ insulation. In the first configuration, figure 48, a
layer of insulation is applied to the bottom surfaces of all three fuel tanks between

the aluminum lower skin and the electric foil heaters. Other than being applied on

top of the insulation, the foil heaters are installed in the same manner as described

in the preceding section for the heating system without insulation.

The minimum insulation thickness required on the bottom surface depends upon

_ : whether or not the insulation covers the stringers. The thickness required for an

arrangement in which the stringers are not covered is approximately twice that

required for an arrangement in which the stringers are covered. Because covering the!
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Figure 48 - Fuel tank electric foil heaters with insulation

(for all tanks.)

stringers nearly doubles the area of coverage, the volume and weight of insulation

required to sufficiently reduce the electric heating requirement is roughly equal for i,

both arrangements. However, the arrangement in which the stringers are covered

results in a warmer bulk fuel temperature for the same heat input. The disadvantage

of this arrangement is that it is somewhat more difficult to install. _-

Based upon the thermal ana]ysls, an insulation thickness of 3.175 =m (1/8 in) was

selected for the study. This thickness met the objective of maintaining the total

aircraft wing heating load within the maximum of 101.5 kW excess capacity of the

existing L-1011 generators (figure 46). A further increase in the insulation

thickness did not signlficantly reduce the electrical power requirements.

The second configuration defined is identical to the first configuration in

regard to the bottom surfaces of the three fuel tanks. However, in the second

configuration, figure 49, a layer of insulation is added to the upper surface of Tank

2-outboard. The installation of insulation on the upper surface of Tank 2-outboard

is effective because normal fuel management procedures result in this tank remaining

full of fuel for long periods of time. When the tank is full, fuel is in contact

with the upper tank surface and a high rate of heat loss occurs. Fuel management

procedures are different for the inboard fuel tanks, Tanks I, 3, and 2-1nboard.

These _rocedures result in the fuel in the inboard tanks being consumed first. The

inboard tanks are full only for relatively sho_t periods of time and only for long
range flights. The air space (ullage space) that forms between the fuel and the

;, upper surface when the tanks are less than full provides sufficient insulation for
_ the upper surfaces of these tanks. Therefore, the installation of the upper surface

i insulation in the inboard tanks is not advantageous.

_..
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Figure 49 -Fuel tank electric foil heaters with insulation

(for tank 2-outboard.)

6.1.1.3 Engine fuel system heating: In addition to the fuel tanks , the engine

and APU fuel systems must be protected against fuel freeze-out. Since the engines
and the APU produce enough heat locally to prevent freeze-out when operating, the
potential for freeze-out exists only when one or more of these units is shut down. J

In the APU, freeze-out could be a common occurrence because the unit is normally shut
down in flight. Because the APU is used in flight as an emergency power source, its

fuel system must be made operable quickly. Freeze-out may also occur on the
occasions in which an engine is temporarily shut down in flight. Therefore, fuel

system heating is provided to insure that freeze-out will not prevent starting a shut

down engine or an APU when it is needed.

Two sources of heat were investigated: bleed air from an operating engine and

. electrical power. Of these, bleed air heating is the recommended method because it
is possible to concentrate a large quantity of heat on several adjacent fuel system

components by simply directing the air through a discharge manifold onto the

components. To achieve the same effectiveness using electrical heating would require
that specifically designed heating Jackets be fitted around each fuel system

component. Maintenance of the fuel system would be made more difficult by the
presence of these jackets. Because the heating system would be operated only for
short periods of time, the impact of using bleed air heating on the aircraft's
overall fuel economy is negligible.

Bleed air is available in the APU compartment and in the engine nacelles through
the existing pneumatic system ducting. This system interconnects the three engines

and the APU so that bleed can be directed to inactive engines or to the APU from

active engines or from the APU when it is operating.

_"' g3
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For the APU, air from the pneumatic system is ducted through shrouds which

surround the fuel llne_ within the APU compartment. This air is discharged from the

shrouds through manifolds that direct the air onto the fuel pump, oil-to-fuel heater,

fuel filter, and fuel control unit. A small portion of the air is used to heat the

segment of fuel llne that runs from the aft bulkhead to the APU. The entire APU fuel

system heater is controlled by a single valve located at the junction between the

heating syst and the bleed air interconnect llne. The installation of the control

valve, fuel line shrouds, and discharge manifolds for the APU is shown in figure 50.

For the engines, bleed air from the pneumatic system passes through shrouds

surrounding the network of fuel lines within the nacelle. This ai£ is discharged

from the shrouds through manifolds that direct the air onto the oil cooler(s), the

low pressure filter, and the low pressure pump. A small portion of the air is used

to heat the segment of fuel llne which, for the wing engines, runs from the wing tank

through the pylon to the engine nacelle and, for the center engine, runs from the aft

bulkhead to the r;acelle. As with the APU fuel system heater, the engine fuel system

heaters are controlled by a single valve for each engine. The installation of the

control valve, fuel line shrouds, and discharge manifolds for the engines is shown in

figure 51.

In addition to the fuel system components previously discussed, the segment of

fuel line that runs through the fuselage from the wing tanks to the aft bulkhead must

be protected against freeze-out. Without protection, this fuel llne would be subject

to the slow accumulation of freeze-out in flight. This is due to the constant flow

of vent air through the vapor/spillage shroud which surrounds this llne. The

recommended method for protecting this line is to mix a small quantity of bleed air i

with the vent air to maintain an air temperature above -17°C.
i.

I

Fuelline sh,oud
andmanifold %

Oil-to.fuel Fuelline Bleedair
heater interconnect

line '
Fuelpump,

I

t

t
New
valve

Fuelfilter

/ i

Fuelcontrolunit

Figure 50 - APU fuel system heating.
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Figure 51 - Engine fuel system heating.

In this and the two preceding sections, various modifications to the baseline

aircraft were discussed for dealing with the use of a high freeze point fuel. In

subsequent discussions, each of these concepts will be referred to as follows:
!

FUEL TANK ENGINE/APU
SYSTEM PROTECTION PROTECTION

I ELECTRIC FOIL HEATER BLEED AIR
WITHOUT INSULATION HEATING

II ELECTRIC FOIL HEATERS BLEED AIR

WITH INSULATION ON HEATING

THE BOTTOM SURFACE i

I11 SYSTEM II PLUS INSU- BLEED AIR

LATION ON THE UPPER HEATING
SURFACE OF TANK 2-

OUTBOARD

6.1.2 Evaluation of high freeze point concepts. - The critical mission to be
examined for the high freeze point fuel Is the 9260 kin (5000 n.mi.) mission on a cold

day assuming that the payload of 18 144 kg (40,000 ib) will be maintained.

The concepts were described in detail in Section 6.1.1. Each concept

incorporates foil heaters on the bottom of the tanks but the presence and degree of
fuel tank insulation varies.
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6.1.2.1 Weight and electrical power assessment: Insulation weights for this

assessment are based upon a 50/50 mixture by volume of polysulflde and hollow glass

mlcrospheres. This insulation has a weight density of 16.45 kilograms per square

meter per _entlmeter (8.56 pounds per square foot per inch) of insulation thickness.

The roll heaters incorporate a fuel resistant Kapton insulatlon and have a weight of

0.4589 kilograms per square meter (0.094 pounds per square foot).

Electrical power for heating the fuel is supplied by the existing aircraft

electrical system modified to produce additional power, if required. The existing

L-1011-500 airplane generator capacity is capab]e of supplying 101.5 kW in excess of

; ship's requirements when all three engine generators are operating.

The loss of one of these generators can be replaced by _atuatlng the APU

generator. However, the probability of this failure o _urrlng is remote and was not

considered in this analysis. Its impact on the aircraft performance In the course of

a year's operation would not he significant.

The weights and electrical power requirements for each system are summarized in _,

table 12. An inspection of the table shows that System I with no fuel tank

insulation has a sizable weight advantage over the other systems considered.

However, its power requirement of 270 kW to heat the fuel is 168.5 kW more than is

available from the existing electrical system. To meet this requirement, the

existing pneumatic starting system would be replaced by a 150 kVA starter/generator

mounted on each engine starter pad and an equivalent generator on the APU for

self-contalned starting of the engines. These starter/generator systems are within

the state-of-the-art and would not entail any major development effort i
(reference 30). I

TABLE 12 - WEIGHTS AND ELECTRICAL POWER REQUIREMENTS FOR i
ENGINE FUEL SYSTEM HEATING

J

-F }

Fuel Tank k Engine Starter/Sen Electrical Power Added ;
Insulahon Heater Fuel System Net We,ght Required By Generator Capac=ty

Weight Wezght _ Heatmq Added Total Heaters Kdowatts
System kg Oh) kq (Ib) kq (Ib) kg (tb) k9 (Tb) K=lowatts

I

'_ I Heaters Only IF )
Bottom Surfaces 0 0 59 1129) 46 (102) 61 (134) 470 (1030) ! 635 (1401) 270 270

I
I2 System 1 Plus

3 175 mm {1/8 m)

Insulahon Bottom 646 (1425) 59 (129) 46 (102) 51 (134) 0 (0) 812 (1790) 87 3 O
Surfaces and F

Strmqers

3. System 2. Ptus

3 175 mm (1/8 m)

Insulahon on Top 779 {1717) 59 (129} 46 (102) 61 (134) 0 (0) 944 (2082) 74 8 0
Surfa.:es and

Strmgers Tank 2

i Outboard

I , r

[
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J

From considerations of weight and electrical power requirements, System I,

because of its lighter weight, appears to be the most desirable. However, the added
complications of the starter/generator system may be a deterrent to its selection.

In that case, Systems II and III, which can operate within the existing aircraft
electrical power limitation, are more desirable.

6.1.2.2 Impact on aircraft performance: The parameters that best describe the

impact of these systems on aircraft performance are the increase in takeoff gross

weight and block fuel weight (reference Appendix). In table 13 the total effect on

gross weight and block fuel is divided into two parts. The first part is the effect

of the increase in the aircraft operating empty weight that is caused by the fuel

heating system. The second part is the effect of the increase in the engine specific
fuel consumption which is caused by additional power extraction to provide for the
increased electrical requirements for the heaters. The total effects show that

System I has the least impact on the aircraft takeoff gross weight but requires more
fuel to complete the 9260 km (5000 n.mi.) mile range than either of the systems using
fuel tank insulation. The increase in TOGW is a built-ln penalty which must be

evaluated during hot day operation. An inspection cf the payload/range curve
discussed eerlier, figure 7, shuws that none of the proposed systems affect either
the payload or the range of the aircraft adversely with the study payload of

18 144 kg (40,000 pounds). The primary concern of the operator is that this added
fuel consumption increases his operating costs.

TABLE 13 - IMPACT OF FUEL SYSTEM HEATING ON AIRCRAFT PERFORMANCE

All Engines Operating - Cold Day - 9260 kilometers (5000 n.ml.)

Effectof 0EWChange

Increase _ Block ABlock
InEmptyWeight ATOGW Fuel ATOGW Fuel

System kg (Ib) kg fib) kg (Ib) _0EW AOEW

I 635 (1400) 1009 (2225) 317 (700) 1.589 0.499
II 812 (1790) 1288 (2840) 408 (900) 1.586 0.r.,02

III 943 (2080) 1497 (3300) 476 (1050) 1.587 0.505

Effectof SFCChange

_%SFCDueto
AdditionalFuel _ Block A Block
Consumption ATOGW Fuel ATOGW Fuel

System % kg (Ib) kg (Ib) L__SFC A%SFC

I 0.554 494 (1089) 480 (1060) 892 (1966) 868 (1913)

II 0.196 175 (386) 155 (342) 893 (1969) 791 (1745)

III 0.171 152 (335) 132 (292) 889 (1959) 772 (1708)

+
!

++I
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' The table also includes sensitivity coefficients based upon the change in

operating empty weight and percent change in SFC incurred by each of the systems [or

evaluating the impact on payload/range of small changes in payload_

The possibility of modifying the flight profile by increasing flight speed and

decreasing altitude to raise the adiabatic wall temperature, which acts as a heat

sink for the fuel, was discussed and rejected in Section 5 because of the limited

cruise altitudes, 3048 to 3862 m (i0,000 to 13,000 it). Hence, this possibility was
not considered in this assessment.

Failure of an engine during takeoff or during cruise must not prevent the

aircraft from completing its mission safely. Since the failure of an englue during

takeoff is one of the requisites for aircraft certification, the ability of the
aircraft to maintain safe flight under such circumstances had to be assessed for each

of the systems. Because the aircraft could meet this condition with the maximum

increase in TOGW of 1496.9 kg (3300 ib), all of the systems were Judged satisfactory
for takeoff.

The effects of an engine failure in cruise were also analyzed for each of the

systems on the cold day assuming the failure occurred at the midpoint of the 9260 km

(5000 n.ml.) flight and the aircraft continued to its destination. Figure 52 shows

the adjustment in cruise altitude from I0 688 m (35,000 it) at Mach 0.82 for three

engine operation to 8839 m (29,000 it) at Mach 0.71 for two engine operation in order

to maintain optimum km/kg (nautical mlles per pound) of fuel. This flight profile
deviation results in an additional block fuel usage of 5142 kg (11,338 ib).

14
3 engineprofileroach0.82

12 Enginefailureoccurs,_

!

lO I

'= 2 engineprofileroach0.71

• ." 8 I
! I '.m
,', | ;

4 I
I

2 I
I
I

0 I I, i i i [_ '
0 1 2 3 4 5 6 7 8 9 10 11 12

t Flighttime _ hours

Figure 52 - 9260 km (5000 n.mi.) mission profile with loss of engine

f in mldcrulse cold day.
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The engine failure also removes one of the generators which supplies the

electrical power for aircraft operation and fuel tank heating. Because the

starter/generators used in System I are sized for engine starting, they have
sufficient capacity to supply all of the required power from two starter/generators

:" only. On the other hand, Systems 11 and 111 require activation of the APU generator

to replace the generator from the failed engine. The added fuel consumed durin_ the
flight, because of the added power extraction from the two operating engines i_

System I, and because of APU operation for Systems II and III, is small as showy _i,
table 14.

r

TABLE 14 - INCREASED FUEL CONSUMPTION DUE TO POWER EXTRACTION WITH ENGINE OUT

Cold Day - 9260 Kilometers (5000 n.mi.)

Systems ABlock Fuel

kg Ib

I 181 (400)

II 154 (340)
III 140 (308)

The Increase in fuel consumption due to the above factors does not increase TOGW
but does result in a decrease In available fuel reserves.

l

6.1.2.3 Manufacturi._g, maintenance, and reliability: there is no existing

thermal Insulation material upon which to base opinions concerning manufacturing

methods. Expert opinion based on similar material (polysulfide with phenolic
mtcrospheres) is that the material must be troweled on. This will make thickness

control difficult. A n_lon barrier may be required to prevent absorption of fuel by '-

the polysulfide resulting in swelling which would cause it to pull away from the wing
structure and create heat leaks.

There is no prior experience with Insulation and heater system inspection

requirements. Visual observations during normal fuel tank inspections may be
sufficient, but ultrasonic or other inspection methods may be required to detect

leaks which would allow fuel-to-skin contact. Maintenance of the physical integrity
of the heater elements and associated wiring insulation is critical. During some

required structural Inspections the heaters and Insulation must be removed to perform

visual inspections; non-destructive testing (X-ray) may be required.

The life of the insulation will depend on the resistance to fuel absorption

and/or the effectiveness of the sprayed-on nylon barrier. Heater life time may
= exceed aircraft llfe if they are not physically damaged. Both heater and Insulation

could be affected by or affect microrganism growth in the fuel tanks.

6.1.2.4 Impact on direct operating costs: A cost analysls of each of the
proposed modifications required to allow operation with high freeze point fuels was
performed assuming a fleet of 300 aircraft operating over a 16 year period.
Parametric cost factors were developed to represent each system In terms of
production labor hours and material dollars per kilogram of system weight. These

:, basic data were modified to account for individual design concepts for each
applicable major item. Cost factors previously developed for vide body transports

f
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for fabrication, assembly, installation, and modification of valves, pumps, and other

components of the fuel system were used. The cost of insulation and heater
procurement and installation was obtained informally from suppliers.

The premises and assumptions upon which this and subscquent cost analyses wpre

made are shown in table 15. The results of the cost analysis are sho_ in table 16.

Total acquisition costs re reflected largely in depreciation allowances in the DOC

computation and to a lesser _tent in insurance allowances.

The cost breakdown indicates that System I has the lowest maintenance costs

becaase it requires no insulation in the fuel tanks. To inspect the structural

elements of the aircraft, stripping and replacement of the heaters and insulation is

required in 8 percent of the fleet. The remainder of the fleet is required to strip

and replace the heaters and insulation at one half the aircraft life. These costs

more than offset the extra fuel required to operate the SmCo generators to f rnlsh

the 270 kVA needed by the heaters.

System II has the lowest fuel costs but has high maintenance costs because of the

insulation, consequently, the DOC of this system at thr fuel cost o_ $1.GO/gal is

greater than that for System I even though some parameters such a: increase in empty

weight and block fuel favors selection of System II. As the price of fuel increases,

this conclusion will eventually be reversed as discussed in Section 7.2.4.

TABLE 15 - COST PREMISE

Configuration L-IOII-500 Based on New Program Production Quantity 300

Operation

4
IntertLational

Stage Length 9200 km (5000 n.mi.)

Utilization 4718 Block Hours/Year

Block Time 11.2 Block Hours/Trip

Trips per Year 421

Operational Life 16 years

Cost of Fuel $1.O0/Gallon (International U.S. Trunk - May 1982)

, Non Revenue Flying 1.23 percent

Acquisition Costs Included in Depreclatlon

Economics

Year t982

Labor Rates Lockheed (1982 Direct, Overhead, G&A, Other)
, Profit I0 percent

Maintenance

- Structural Inspection requires stripping and replacln 8 insulation and

heaters at 20,000 hours (4 times during llfe) on 8 percent of the

flaet plus l0 percent for miscellaneous checks.

- Life o_ insulation and heaters is assumed to be one half the aircraft

llfe requlrlng one strtpplng and replacement for the remainder of the
aircraft.

- Labor Rate $13.93/hour
- Burden Factor 3.13 (International)

_- I00
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TABLE 16 - EFFECT ON DOC OF FUEL IIEATING SYSTEMS

(Thousands of 1982 Dollars)

I II TII

Ac_isitlon

Full Scale Engineering

Development (FSED) 7350 7350 7350

Procurement 99574 145203 t48523

Total Acquisition 106924 152553 155873

Direc______tOperatlngCosts
Fuel 537686 379435 407236

Insurance 4753 6776 6923 ,

Depreciation 96232 127298 140286
Maintenance i003_i 260251 270173
Total for Fleet 739032 773760 842618

Cost - $/(Ac Yr) 154 161 172

The added insulation weight in System III increases the cost of fuel, resulting
in the highest DOC of the three systems. This also contributes to higher maintenance
and depreciation costs, causing System III to be the costliest of all of the systems.

6.1.2.5 Recommended system for high freeze point fuel: At present fuel prices_

System I is recommended for use with high freeze Folnt fuels because It has the i
lowest acquisition and direct operating costs. Although it has the highest fuel
consumption due to its high electrical power requirements, this cost is more than

offset by its low maintenance costs. System I requires the development of a bonding

agent, which must be impervious to hydrocarbon fuel in order to ensure a dependable

intimate contact of the fuel heaters with the tank surfaces. In addition to having
this requirement, Systems II and III require the development of the 50 percent

polysulflde and hollow glass mlcrosphere mixture insulation. A further advantage of
System I is that the starter/generator electrical power source is independent of the

existing aircraft electrical system which will not have to be recertified, whereas

the added power extraction requirements for Systems II and III will require

recertlftcatlon. As fuel prices increase in the future, System ii will becume the
preferred system because of lower fuel usage,

6.2 Thermal Stability

The proposed relaxation of fuel thermal stability from a JFTOT rating of 260"C to
204"C has been shown, in Section 5.2, to require a reduction in peak fuel temperature
at the RPFCOC discharge from 135"C to 79"C. In the following paragraphs, alternate
engine fuel system design modifications are proposed end ew!uated for effectiveness
in accomplishing this reduction in bulk fuel temperat.re.

6.2.1 Descrlyclon of alternate systems. - The followi_g candidate systems will
be divided into two groups: those which decrease the bulk fu_l temperature and

'"i I01
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i others which assure low fuel-wet surface temperatures in components located in the

hot region of the engine core. In the first group, when considering that the two [.

most important thermal loads in the fuel system _:iginate in the oil heat input and

the operation of the fuel pumps, three approaches were investigated: a) rejection of

engine oil heat to the atmosphere; b) rejection of engine oll heat to the fuel in the

wing tank; and c) reduction of fuel pump heat input. In the second group, the fuel

lines and fuel components exposed by their location to the highest fuel bulk heat

temperature are proposed to be cooled by air jackets and the feed arm structure by

the introduction of heat shields and air jackets. Introduction of advanced ceramic

materials with high resistance to structural loads and fatigue at high temperature

can be utilized, and thus reduce the thermal conductivit_

6.2.1.1 Rejection of oil heat to fuel tank: This modification permits making

full use of the cor'pactness of a single fuel/oll heat exchanger in each engine, while

providing an active control of the fuel temperature which is being aelivered to the

injectors. A schematic diagram of the modification is shown in figure 53. Fuel from

the tank passes through the LP fuel pump and FCOC after which a portion of the fuel

may be directed back to the fuel tank to maintain a maximum heat sink for oil cooling

wheu the engine fuel consumption is low. The fuel flow rate through the modulating

valve is controlled so as to limit the peak fuel temperature at the fuel _emperature

sensor to 79°C.

This system requires LP fuel and HP fael pumps of different capacities. The HP

fuel pump rating is determined by the engine fuel flow rate requirements at takeoff.

The LP fuel pump maximum capacity must accommodate the fuel flow rate at takeoff, in

aadition to the fuel flow rate which is required to provide adequate oil cooling

during the limiting flight, it is estimated that the volumetric capacity of the L=

fuel pump is about twice as high as the HP pump. The additional weight Laquirements

for this system are given in table 17.

TABLE 17 - FUEL BYPASS SYSTEM WEIGHT PENALTY _-

COMPONENT WEIGHT

(Per Engine) (Per Aircraft)

Increase in LP Pump Weight - kg (Ib) + 9.1 (29) + 27.2 (60)

Fuel Thermal Control - kg (ib) + 0.7 (1.5) + 2.0 (4.5)

Fuel Return Line - kg (Ib) + 30.4 (67) + 30.4 (67)
_Engine 2)

Fuel Return Line

(Engines I and 3) - kg (ib) + 3.2 (7) + 6.4 (14)

Total for Aircraft - kg (ib) + 66.0 (145.5)

6.2.1.2 Rejection of excess oil heat to atmo_pheric air: This modification

achieves similar results to tlle scheme described in 6.2.1.1, but avoids the instal-

: latlon of fuel return lines. It requires, however, the addition of an alr/oll heat

exchanger. A schematic diagram of this modification is shown in figure 54. The
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I ] It.PFue,i,_. FuelTank _ Pump

In FCOC Out

Modulating
FuelValve

, I II Pump
I
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ToEng;ne
" Combustor

Figure 53 - Rejection of oil heat to fuel tank.

Fueltank L I--'--"-] Fuelline Jl--.------ Oilline I

LPfuel
pump

Fuo,,o,,] IA'"°"I,.,exchanger exchanger

I" __L --'1 Fuel

'. thermal

,_ _r -'_ 3-wayL Jco,trol

I valve

HPpump

I I _ E,,gine

r Figure 54 - Rejection of excess oil heat to the atmosphere.
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delivered fuel temperature is indirectly controlled by splitti_,g the streams of oil

between the alr/oil heat excPanger and the fuel/oll heat exchanger by means of one

single proportional three-way valve. When the delivered fuel temperature approaches

prohibited limits, tLe three-way valve directs all the oll stream throuBh the alr/oll

heat exchang?r. In intermediate situations, the oll stream is split to achieve a

safe fuel temperature and still take advantage of the oll heat to improve the engine

SFC. In this scheme, the besellne system suffers a minimal impact. Table 18 shows

the weight penalty introduced by this modification.

TABLE 18 - AIR/OIL - FUEL/AIR HEAT EXCHANGER SYSTEM WEIGHT PENALTY
v

COMPONENT WEIGHT

(P_r Engine) (Per Aircraft)

Air/oil Heat Exchanger - kg (Ib) + 6.8 (15) + 20.4 (45)

Three-way Valve and

Controllers - kg (ib) + 0.9 (2) + 2.7 (6)

Total fvr Aircraft - kg (ib) + 23.1 (51)

' Earlier versions of the L-lOll utilized a similar combination of alr/cooled oil

- coolers and fuel/cooled oil coolers. The difference with the present scheme

is that, in those earlier versions, the alr/cooled oil cooler w_s the primary heat

exchanger and the fuel cooled oil cooler was receiving only the excess oil heat. In

th - present modification, the choice of which heat exchanger is the primary cooler

does ,.ot arise since they are both used in parallel as far as the oil stream is
concernec.

When _,sing an 9ir heat ex¢"anger, a decision must be made on whether to use ram

air or fan ai£ for th_ heat exchanger. Since the controlling parameter is the

delivered fuel temperature, the worse conditions within a limiting 'ight have been

identified as being those at grout.d operations and descent. During ,round Idle and

taxiing, ram air is non-exlstent. Fan all 4q then the only source of cooling _ir for

the heat -xchanger.

6.2.1.3 Reduction of fuel pump heat input into the fuel: During ground

operations and descent this thermal load is a major contributor to the heat input

into the _uel. The baseline fuel system uses fixed displacement pumps whose speed is

mechanically coupled to the engine. The corresponding speed at which the fuel

pumping system is drive_ does not necessarily match, for a given delivery pressure,

the volumetric flow rate required by the engine. Accordingly, a bypass circuit is

provided for each pump to spill the excess fuel. As a result of this fuel flow

-: aaJustment, a significant thermal load is input into the fuel. A flow match to the

required fuel delivery pressure would result in a significant reduction in the

thermal load. Experience shows that with this approach, the temrerature increase due

to the pumping system could be reduced from approximately 32°C to 6 or 7°C.

Matching the r_qulred fuel flow rates and delivery pressures can be accomplished

by either using a variable displacement pumping system or using a variable speed

coupler between the pumping system and the engine. Figure 55 shows a schematic

/ diagram of the reduction of fuel pump heat input, using pump speed control. The pump

104
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; speed control may consist of a variable gear ratio coupler or an electrical variable

speed driver motor. The LP and HP pumps are identical to the baseline fuel pumping

system, with the exclusion of the spill valve assembly, which has now been substi-
tuted by a speed control. The weight penalties of this modification are shown in
table 19.

Fueltank ]

. f
I Pumpspeedcontroller

LPPump r- -_

ji -- I I
I -- I

I HPpump I- -- "_-- .,J

Engine

Figure 55 - Reduction of fuel heating using pump speed control.

TABLE 19 - AIRCRAFT WEIGHT PENALTY FOR A VARIABLE SPEED FUEL PUMP SYSTEM

COMPONENT WEIGHT

(Per Engine) (Per Aircraft)

Pump speed controller
; (electrically driven

DC samarlum-cobalt

motor, and governor) - kg (lb) 9.1 (20) 27.2 (60)

Total for aircraft - kg (lb) 27.2 (60)

Variable gear ratio
(_echanlcally driven) - kg (lb) 13.6 (30) 40.8 (90)

" _ Spill valve assembly

i!t removal - kg (lb) - 9.2 (-20) - 27.___2(-60)

Total for aircraft - kg (Ib) 13.6 (30)
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In this case the electrically driven pump has not been deducted from the total

weight since it has been adopted as backup to the pumping system in case of failure

of the mechanically driven system.

Figure 56 illustrates how to reduce the fuel pump heat Inp_,t when using a

variable displacement pump. The pump speed coupling to the engine speed is still

fixed, but the fuel flow rate and delivery pressures are matched by varying the pump

displacement. Flight qualified variable displacement pumps, which are presently

available, are mostly of the piston cylinder type and use sliding surfaces. The=_

pumps are more complex than the centrifugal and gear pumps, and have higher lubricity
requirements. For the baseline fuel system the maximum volumetric fuel flow rate can

be met by a variableodisplacement pump rated at 55 gal/min and with a maximum dis-

placement of 32.8 cm J (2 in.3). A typical weight for one of these pumps is 9.07 kg

(20 ib). A dual variable displacement pump of this rating, incorporating an LP/HP

capability, could be designed to weigh under 13.6 kg (30 ib). Table 20 gives the
weight penalty.

Fueltank

Fuelre9ulator _ "] _'_J

rate control _ ,

, _ Engine

Figure 56 - Reduction of fuel heating using variable

displacement LP/HP pumps.
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TABLE 20 AIRCRAFT WEIGHT PENALTY FOR A VARIABLE DISPLACEMENT FUEL PUMP SYSTEM

COMPONENT WEIGHT

(Per Engine) (Per Aircraft)

Removal of baseline

LP/HP pumping system - kg (ib) - 36.3 (-80) - 108.9 (-240)

Installation of a dual

variable displacement

pumping system - kg (ib) + 13.6 (30) + 40.8 (90)

Total for aircraft - kg (ib) - 68.0 (-150)

Substitution of the baseline pumping system by a variable displacement pumping

system results not only in lower thermal loads, but also in a decrease in weight. As
discussed later, these advantages have to be weighed against higher complexity, lower
reliability and highor maintenance costs, relative to the previously discussed

system.

6.2.1.4 Reduction of fuel-wet surface temperatures in the core region: The fuel

feed and drain lines, manifold and distribution valves, and injector feed arms are
subjected to the hot environment of the core. The injector feed arms are exposed to
the most severe temperatures from heat conveyed by the compressor air. The fuel

lines, manifold and distribution valves are not so exposed to soak back heat because

of the stand-off mounting brackets supporting them to the core surfaces. The
modification suggested introduces coaxial stainless steel tubes of about 7.62 cm

(3 in.) in outside diameter, which are utilized in place of the existing 3.81 cm

(1.5 in.) fuel lines. The outer tube plays the role of a heat shield, and the air

gap in between serves as an impedance path to heat conductance. The outer tube can

be welded to shrouds which surround the distribution valves, extending in this manner

the heat shield throughout all the fuel-wet surfaces located on the core, except in
the injectors. During normal engine operation, the cavity between the heat shield

and fuel lines and components contains still air, and the fuel flow is sufficient to

keep the wet surfaces from reaching prohibitive temperatures. During engine
shutdown, air could be blown, at different points, into this gap to reduce the engine
soakback heat. Figure 57 illustrates the concept in a section of the coaxial tube.

Two approaches can be adopted to reduce the wet surface temperatures in the feed

arms. The first approach, figure 58, uses a heat shield, directly in contact with

the compressor air, and protects the feed arm. The feed arm has been reduced to a

sing)e tube supported on the l_eat shield by structural cross members. At the end of

the feed arm, the bell-mouth burner penetrates the last sealed structural member.

With this disposition, the feed arm itself is kept at low temperatures while only the

bell-mouth is exposed to the compressor air temperature. The second approach does

not alter the original geometry of the baseline injectors, but it utilizes high
temperature ceramic materials instead of cast steel for the structure of the
injector. If necessary, the feed arm conduit itself can be lined with stainless

steel or other fuel compatible material. In this manner, the high rigidity of the

! original design is maintained while a high resistance path is presented to heat
conduction from the compressor. Table 21 gives the weight penalties for this system.

i
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Figure 57 -Heat shield for lines and components

located in the hot section region.

TABLE 21 - FUEL SYSTEM HEAT PROTECTION ON WEIGHT PENALTY

COMPONENTS WEIGHT

(Per Engine) (Per Aircraft)

Coaxial tubes for

fuel feed and drain

lines, manifold

distribution valves

and pigtails - kg (Ib) 4.54 (i0) 13.61 (30)

Heat shield for

injector feed

arms- kg (Ib) 1.36 (3) 4.08 (2)

Total for aircraft - kg (ib) 17.69 (39)

6.2.2 Evaluation of candidate systems. - The modifications to the baseline fuel
system that have been proposed in the previous paragraphs, were evaluated here

according to certain dominant criteria such as weight increase, electric power

requirements and effect on the specific fuel consumption, safety, maintenance, and

reliability. Other secondary factors such as technology developments, materials,

cost, and suitability for retrofit or adaptability were also considered. In the

following paragraphs, the effect on SFC is discussed in terms of: I) the effect of

lowering the delivered fuel temperature to meet the lower thermal limits imposed by

the utilization of a low thermal stability fuel; 2) the SFC penalty caused by

utilization of fan air, or 3) the higher power requirement to drive the pumping

system. The evaluation will be conducted for a representative flight condition, such

as cruise at i0 668 m (35,000 ft) and Math 0.82 during a hot day. Results of the

evaluation are shown in figure 59.
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6.2.2.1 Rejection of oll heat to fuel tank: This scheme requires a return line

in addition to a fuel thermal control system. The weight penalty for the aircraft is

65.77 kg (145 ib) and additional power if needed to drive the LP fuel pump. The

system should be designed to provide oll cooling during takeoff, and the LP fuel p_mp

must therefore accommodate about 15 876 kg/h (35,000 Ib/hr) and be able to boost the

pressure by a_ much as 6894.4 kPa (I00 psi). This represents an increase in power

requirements from the HP rotor of 1.5 kW (2 HP) at takeoff and climb, and 0.7 kW (I

HP) for cruise. The effect on the SFC of the power required to recirculate the fuel

back to the wing tank is negligible.

6.2.2.2 Rejection of excess oll heat to the atmosphere: Rejecting excess heat

to the atmosphere has a simpler implementation than the previous system, and the

increase in SFC, due to heat loss, is negligible. The alr-cooled oil cooler requires

fan air in ground operations and in flight. The fan bleed represents an SFC penalty

in cruise of approximately 0.5 percent.

6.2.2.3 Reduction of fuel pump heat into the fuel: Besides the weight penalties

already discussed, additional electrical power of 12 kW is required to drive the

pumping system. In this case, however, the power required for the pumping system,

except for efficleucy losses, is adjusted exactly to the engine requirements at each

flight condition. This matching has a favorable impact on SFC, despite delivering

the fuel at a lower temperature. This system r_q,llres the installation of adc

motor, and therefore slight increases in maintenance, cost, and a decrease in

reliability. When the pump speed is mechanically controlled, the SFC improves by
about C.I percent; in addition to the weight penalties, there is a decrease in

reliability; and an increase in cost, maintenance, complexity, and oll lubrication

requirements.

When using variable displacement pumps, some of the criteria appear to move in a

favorable direction, including weight and specific fuel consumption. Variable

displacement pumps, however, are less reliable and require higher maintenance. From

the materials point of view, special liners for the cylinders may have to be built

from carbon treated steels to cope with poor lubricity fuels. The cost of these

pumps is also higher.

6.2.2.4 Reduction of fuel wet-surface temperatures in the core region: All the ,_.

schemes described in paragraph 6.2.1.4 can be implemented with minimum impact on the

aircraft, save for the increase in weight and the decrease in structural rigidity of

the injectors. The suggested introduction of ceramics as a structural member for the

injectors would be a new technological development. Because of the lack of detailed

temperature data in the area of the core, it Is difficult to predict the decrease in

surface temperature and the benefits which will be obtained with such schemes, and

further work in this area is recommended. Furthermore, it is not known whether these

surface temperatures are high enough to constitute a source of carbon deposition even

when utilizing fuel with a JFTOT of 204°C.

6.2.3 Recomended system for low thermal stabi!It _. - Limiting the engine

manifold fuel temperature to 79°C on a 54°C day cannot be accomplished by any one of
the proposed systems. However, a combination of heat rejection to the fuel tanks and

to the atmosphere coupled with the use of a variable displacement high pressure fuel

pump and heat shielding of the fuel injectors can approach the 79°C target. This
system is illustr_ted in figure 60.
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Figure 60. Recommended system for low tt.ermal stability fuel.

The primary heat sink for cooling the engine o11 is the engine fan air with any
additional heat rejection required to limit the manifold fuel to 79°C going to the
fuel tanks. A fuel temperature sensor _t the discharge of the fuel flow regulator
supplies a slgnal to two flow modulating bypass valves which control the amoun, of
heat rejected to the fan air and to the fuel tanks. If the fuel temperature at the
manifold exceeds 79°C, all of the engine oil is directed through the alr-cooled oll
cooler and the fuel return bypass valve modulates fuel returned to the fuel tank to

supply any addltlonal cooling required. If the fuel temperature drops below 75°C,
the fuel return bypass valve remains closed and the alr-cooled oil cooler bypass
valve bypasses oll flow around the cooler to maintain the required minimum tempera-
ture.

A weight summary of these modifications in table 22 shows an OEW increase of
38.56 kg (85 Zb).

TA3LE 22 - WEIGHT EVALUATION OF RECOMMENDED SYSTEM FOR FUEL COOLING

(Recommended Low Thermal Stability Fuel Only)

(11 Heat Rejection to Fuel Tanks - k8 (ib) + 65.8 (1451

Heat Rejection to Atmosphere - k8 (Ib) + 23.1 (511

(2) Replacement of HP pump wlth
Variable Displacement Pump - kg (Ib) - 45.7 (100.8)

(3) Shields - kg (ib) + 4.1 (9)

Net Increase in Empty Weight - k8 (ib) + 47.3 (104.2)
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Replacement of the LP/HP pump by a direct centrifugal LP pump and a variable

displacement HP pump has the effect of removing only 45.7 kg (100.8 ib) as contrasted
to the 68.04 kg (150 ib) reduction cited in table 23 for replacing both LP and HP

pumps by variable displacement pump_.

The engine fan air bleed will increase fuel consumption in flight and using the

tank fuel as a heat sink will require that significant quantities of fuel be retained

in the fuel tanks for extended engine operation on the ground in hot weather.

The weight penalties of the recommended system on TO_R and block fuel for the 926

and 9260 km flights are small as shown in table 23 (reference Appendix) as is the
increase in direct operating costs of these changes shown in table 24.

TABI_ 23 - WEIGHT PENALTIES DUE TO RECOMMENDED SYSTEM

FOR FUEL COOLING

ABlock A Block

FlightLength A0EW ATOGW Fuel ATOGW Fuel
km (n.mi.) Day kg fib) kg fib) kg (Ib) AOEW AOEW

9260 (5000) Cold 38.6 (851 68.0 (1501 22.7 (50) 1.762 0.588

926 15001 Hot 38.6 1851 45.4 11001 4.5 (lOI 1 176 0.177 i
I.

!

TABLE 24 - DOC INCREASES DUE TO RECOMMENDED SYSTEM FOR LOW THERMAL

STABILITY FUEL

(Thousands of 1982 Dollars)

Ac_ulsltlon
Full Scale Engineering Development (FSED) 1753
Procurement 16588

Total Acquisition 18341

Dlrect Operating Costs
Fuel 15275
Insurance 816

Depreciation 16507
Maintenance 5296

Total DOC 37894

Cost - $/(Ac.Yr) 7.89

!
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6.3 Other Property Changes

The extensive aircraft and engine fuel system modifications such as are required
t

to adapt to high freeze point and low thermal stability fuels are not typical of the

changes required to adapt to the other fuel property changeg being ¢onsldered.

Higher aromatics in the fuel increase the solubility parameter and thus may

require the selection of polymeric materials with higher values of the solubility

: parameter. For example, a transition to Buna-N copolymers with higher acrylonitrile

content can be made. The solubility parameter of Buna-N copolymers are known to

increase _th increasing acrylonitrile content in the copolymers. Another possible

modification is to use materials with very low values of the solubility parameter

such as the fluorocarbon polymers. Both of these approaches are state-of-the-art and

will have no impact on the aircraft performance.

The projected increase in fuel viscosity will cause a small increase in power to

overcome the associated increase in fuel line pressure drop and a minor decrease in

heat exchanger performance. However, the impact on aircraft performance will be

insignificant.

A reduction in lubricity characteristics of the fuel is acceptable providing

corrosion inhibitor additives are used in the fuel. However, because of the adverse

effect that such additives have on the water separation characteristics of the fuel,

a more feasible solution is to change the materials to carbon steel where friction

between surfaces is a problem.

Of the remaining properties, water separation and electrical conductivity are _

easily controlled and the changes being considered for flash point and vapor pressure
are well within the range of Jet B fuel characteristics, a fuel on which all existing

Jet aircraft are certificated to operate.
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7. CANDIDATE ADVANCED FUEL SYSTEMS CONCEPTS

In Section 6, a number of fuel system design modifications were proposed which

would enable the L-IOII-500 airplane to perform satisfactorily with the relaxation of

a single property of ASTM D 1655-81 Jet A fuel. Although many fuel properties were
considered in the study, the vnly fuel properties which had a significant impact on
the aircraft performance were higher freeze point and lower thermal stability. In

this section, three alternative fuel system designs, each enabling the aircraft to

operate satisfactorily using a fuel incorporating all of the relaxed fuel properties
simultaneously, are described and compared in terms of impact on the aircraft direct

operating costs.

o_ 7.1 Candidate Descriptions

Table 25 describes the three candidate systems, A, B, and C, in te_ms of the

modifications required to permit the use of a fuel having both a high freeze point

and a low thermal Etabillty. Each candidate incorporates the identical means of

protecting the engines and APU from fuel freeze-out by ductlng lot bleed air to
non-operatlng components and from excessive gum, varnish and coke formation by

providing a means of limiting peak temperatures in their fuel systems. The

candidates differ significantly, however, in the means of preventing freeze-out in
the fuel tanks. All of the candidates use electrical fo_l he..ters on the bottoms of

the tanks but candidate A requires an additional dedicated starter/generator to

replace the existing pneumatic starter on each engine and an equivalent generator on
the APU because of the excessive heat loss through the uninsulated skins. Candidate ,.

systems B and C do not require the added generate" capacity because the tank

insulation reduces fuel heat losses to a level that is within the electrical capacity

of the existing aircraft generators. Each of these systems will maintain the fuel

temperature in the tanks above -17"C w_ich is 3°C above the projected freeze point of
the fuel. All other parts of the aircraft, non-operatlng engine, and APU fuel

systems are warmed by engine bleed air only as required to ensur_ their operation
when activated.

Peak temperatures In the engine fuel system are reduced to levels which are

compatible with a JFTOT rating of 204°C by using engine fan alr, and wing tank fuel,

as well as fuel consumed by the englne, as a heat sink for engine ell cooling and by

using a variable displacement pump to reduce the high pressure pump heat rejection.

7.2 Performance Evaluation

Each of the candida_e systems impacts th_ overall performance of the airplane by
causing an increase in empty weight. E_pty weight increases cause an increase tn the
takeoff weight and subsequently result in an increase in fuel required to fly the
mlsslon. Increased power extraction to meet the higher electrical loads required for
fuel tank heating also increases fuel consumption. These changes, however, will not
prevent the ai:_lane from operating on the desired routes unless a limit, maximum
takeoff weight or maximum fuel capacity is reached. Even in this case the mission
can be completed by accepting a reduction in payload.

7.2.1 All engines operatln 8. - The three candidates are _ompared with each other
and with the baseline airplane in table 26 (established from InfGraatton obtained

from the Appendix). The total effect of :he systems on takeoff gross weight and

I t 15
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TABLE Z5 - CANDIDATE FUEL SYSTEMS CONCEPT DESCRIPTIONS

H,ghFreJzePu,,_tFuel LowThermalStabilityFuel

Candidate FuelTankModificatmn._ Engine/APUModifications Engine/APUMod=hcations

A o Electricfoil heaterontank o Replacepneumaticstarterwith o Oil heatrejectionto air,consumed

bottoms. Sin/Cos_arter/generator. _uelandfuel tanks.

o Bleedairheating, o Variabledisplacementhigh
pressurefuelpump.

B o Electricfoil heater, o Bleedairheati_,_.
o Heatshieldingof fuel injectors.

o 3.175 mm (1/Sin.)insulation

ontank bottoms.

C o Electricfoil heater,

o 3.175mm (1/8in.)insulation

ontankbottoms,

o 3.175 mm(1/8 i,.) insulation

ontop of Tank2 outboard.

ModificationsR Jquiredby OtherF':_.;;'r_erW changes(No PerformanceEffects)

o Aromatics-materialschanges.

o Viscosity- nonereq_!red.

o I ubricity- materialchanges.
o WaterSeparation- nonerequired.

o Elact,;r.alCoaductivity- antistaticadditivemay beaddedto fuel.
o FleshPoint/VaporPressure• nonerequired.
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TABLE 26 - COMPARISON _,_=CANDIDATES TO BASELINE AIRPLANE

All Engines Operating Cold Day -9260 kilometers (5000 n.mi.)

Effect of OEW Change

Candidate Increase in Empty ATOGW _Block 5TOGW LBlock Fuel

Weight Fuel 50EW _OEW

- kg (Ib) kg (ib) kg (ib)

A 67& (1485) ]066 (2350) 340 (750) 1.582 0.504
B 850 (1875) 1349 (2975) 431 (950) 1.587 0.507

C 982 (2165) 1553 (3425) 494 (1090) 1.581 0.503

Effect of SFC Change

_%SFC Due to

Candidate Additional Engine ATOGW ABlock 5TOGW ABlock Fuel

Fuel Consumption Fuel 5%SFC &%SFC

kg (ib) kg (ib)

A 0.554 494 (1089) 480 (1060) 892 (1966) 866 (1913)

B 0.196 175 (386) 155 (342) 893 (1969) 791 (1745)

C 0.171 152 (335) 132 (293) 889 (1959) 772 (1713)

L

block fuel is divided into two parts. The first part is the effect of the increase j

in the aircraft operating empty weight that is caused by the change in the fuel 4

system. The second part is the effect of the increase in the engine specific fuel

consumption which is caused by additional power extraction to provide for the

increased electrical requirements for the heaters. Exchange ratios or sensitivity
factors ar_ also presented to enable small adjustments to be made in TOGW and block
fuel.

Although Candidate C show_ the largest increase in TOGW, this effect is not as

significant as the increase in block fuel because the airplane is not weight limited

at the 18 144 kg (40,000 Ib) payload level.

7.2.2 Engine out operation. - The failure of an engine in flight significantly

increases fuel system heating requirements because the lower flight speed and longer

time in flight lowers the adiabatic wall temperature that acts as a heat sink for the

fuel heat. The loss in generator power can be made up in Candidates B and C by
activating the APU. However, the excessive generator capacity required for the Sm/Co
starter/generator used in Candidate A is more than adequate to meet the added heating

loads without activating the APU. The increase in fuel consumption due to power
extraction was shown to be small in Section 6.1.2.2 relative to the increase in fuel

consumption due to the change in altitude and Mach number. The total fuel

consumption increase due to engine out operation, which comes out of reserves, is
shown in table 27.

!
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TABLE 27 - INCREASE IN FUEL CONSUMPTION FOR ONE ENGINE CUT OPERATION

Cold Day - 9260 kilometers (5000 n.ml.)

Candidate _Block Fuel

kg (ib )

A 532_ (11,738)
B 5297 (11,678)

C 5283 (11,646)

7.2.3 _Maximum payload for 9260 km (5000 n.mi.) rang_. - The operating limits of

the airplane become most critl al on the hot day ml sion. Thruqt limitations of the

engines in climb plus a higher fuel consumption force 'he airplane nearer to its

operaLiL_ limits. The IJwer thermal stability and high freeze point fuels further

impact the situation. The payload range curve for the hot _ay was _hown previously

in figure 7. At a range of 9260 km (5000 n.ml.) the aircraft has the potential to

carry 25 402 kg (56,000 ib) of payload, therefore, it is not limited by the chosen

payload of 18 144 kg (&O,O00 ib). Statistical anal>_Is shows, however, that for the

present airline average annual load factor, approximately 4 percent of the time the

flights will be full, a load factor of I00 percent. The impact of the increase in

OEW on maximum payload for each of the ¢_ndJdates is shown in table 28. The increase

in OEW reduces th_ maximum payload directly which means a reduction in cargo as
indicated.

TABLE 28 - COMPARISON OF CANDIDATE SYSTEMS AT MAXIMUM PAYLOAD HOT DAY

9260 km (5000 n.mi.} Range

System AOEW Max. Payload Cargo

k_ (ib) kg (lb) k_ (ib)

Baseline 0 25402 (56,000) 2899 (6390)

A 674 (1485) 24728 (54,)15) 2225 (4905)

B 851 (1875) 24551 (54,125) 2053 (4525)

C 982 (2165) 24420 (53,835) 1916 (4225)

7.2.4 Comparison of direct operating costs. - The acquisition costs including
full scale engineering development and procuremenL costs for a fleet of 300 aircraft

operating for 16 years have been factored into the direct operating costs for each

candidate aircraft. Direct operating costs for this comparison included fuel con-

sumption, insurance, depreciation, and maintenance only. The data are expressed in
thousands of 1982 dollars in table 29. The effect of changing fuel cost is also

shown in the table and is illustrated in figure 61. Direct operating costs were

calculated for fuel costing $1.O0/gal, $1.50/gal, and $2.00/gal. The total fuel

costs for Candidate A are always highest. At the baseline fuel cost of $1.O0/gal the

depreciation and maintenance costs required for the fuel tank insulation in
Candidates B and C more than offset the fuel costs. This is reflected by the lower

, direct operating cost for Candidate A. However, at the higher fuel costs, the

reduced fuel usage of Systems B and C overcomes the advantage of the less complex

i System A. The crossover in DOC occurs at $1.27/gai for System B which, on the basis
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TABLE 29 - INCREASE IN DIRECT OPERATING COST

(THOUSANDS OF 1982 DOLLARS)

Candidate A B C

ACGUISITION

FullScaleEngineering 9103 9103 9103
Development(FSED)

Procurement(300Aircraft) 116162 161791 165111

(HeaterMaterialCost)* (22848) (22848) (22848)

(InsulationMaterialCost)* ( - ) (5242) (6250)

Total Acquisition(300 Aircraft) 125265 170894 174214

DIRECT OPERATINGCOSTS

Fuel(@$1.00/gaL) 552960 394710 422510

Insurance 5569 7592 7739

Depreciation 112739 153804 1.56793

Maintenance 105657 265547 ._75469

Total DOC 776925 821653 862511

COST$/AC/YR

FuelCost - $1.00/gal. 162 171 180

- $1,50/gal. 219 212 224

- $2.00/gai. 277 253 268

: *Costof heatersandinsulationmaterialinthe aircraftisincludedin Procurement.
p

119

1985010866-128



%

• tndldate A

c

i5o I I
1.00 1.50 2.00

Fuelcost_dollars/gallon

Figure 61 - Impact of fuel cost on DOC.

of cost considerations, is therefore the preferred candidate. These incremental
costs we[e Incurred because of baseline aircraft design modifications required to

adapt to a fuel with relaxed fuel properties. Assuming the relaxed properties would
permit a reduction In fuel production costs, some of which could be passed elong to

tL_ consumer, the price of fuel based upon 1982 dollars to permit the operator to

: break even after 16 years of operation was estimated to be as follows:

Candidate Fuel Price Reduction

Baseline $1.O0/gal.
A $0.9855/gai.

B $0.9844/gai.
C $0.9836/gal.

Conversely, if present fuel properties are maintained regardless of the quality

of crudes being delivered to the refinery, the cost of engine and airframe fuel
system modifications would not be incurred. As an insurance that present fuel

, properties be retained, the aircraft operator could afford to Pay the following for

his fuel depending upon which modification had been contemplated:

" Candidate Fuel Price Increase
i

Baseline $1.O0/gal.

A $I.0038/gai.
B $I.0074/gai.

_' C $I.0075/gai.
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Although these price estimates would have no effect in fuel prices which are

determined primarily by the economic factors of supply and demand, they do represent

an allowable fuel price differential to recover costs of installing the various
candidate fuel systems or insurance to preclude their need.

7.2.5 Support s_stems_ malntenance, safety. - A Samarium-Cobalt (Sm/Co) starter/
generator is incorporated in Candidate A which replaces the pneumatic starter, valve,

and ducting. It requires a small gearbox adaptor, electricl converters, contactors,

and additional wiring. For the aircraft, this means acceptability problems because

of the new starting metLodology. This disadvantage in Candidate A is somewhat offset

by the necessity of recertifying the electrical system of Candidates B and C because
of the higher electrical loads resulting from tank heating.

The control systems for all of the candidates are essentially the same and add a

degree of complexity which will entail added maintenance. However, it is not

_cpected to necessitate a change in malntenanc intervals. The presence of
insulation in Candidates B and C should not require any additional _nspectlon time

compared to Candidate A inasmuch as the foll heaters, which all of the candidates
use, are in essentially the same locations as the insulation and are subject to the
same environment. However, the insulation _s expected to require more cos_ly

maintenance to ensure its integrity and that of the aircraft structure which it
covers •

The insulation material, nylon coating and heaters must be stripped and replaced

during periodic structural inspections as defined in the premise outlined in
table 15. The stripping and replacing of the ins Jlation material inside the confined

area of the wing tanks is a significant malnten ,ce task with the overall replacement
requiring approximately twice the original installation time.

The safety aspects of all candidates are identical and are a result of the

presence of additional electrical wiring in the fuel tanks. The physical Integ[Ity

of the heating elements and associated wiring insulation and isolation from fuel

vapors must be assured by the design methods employed to insure s_fe and dependable
operation.

7.3 Summary Comparison and Conclusions

Each of the candidates were compared to each other and to the baseline airplane

in Section 7.2. All of the candidates are capable of operating over flight ranges of

926, 3704, and 9260 km (500, 2000, and 5000 n.ml.) in the extreme hot and cold

environments developed in Section 3.2 using a fuel ,,_h the following properties
relaxed from ASTM D 16_5-81 Jet A fuel:

Freezing Point, °C (°F) -20 (-4)
Thermal Stability, JFTOT, °C (°F) 204 (400)

Aromatic Contents, % Volume 35
Viscosity, mm /s (cSt) at -17.8°C (O°F) 15 (15)
Reid Vapor Pressure, kPa absolute (psia) 13.8 (2)

Flash Point, °C (°Y) 27 (80.6)
Lubrlclty, WSD, mm 0.45

For purposes of this study, these fuel property changes are assumed to be the

maximum for which system design changes can compensate. Based upon this assumption,
the candidate which best meets the goal of operating the aircraft with minimum
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! performance penalty for the specified payload of 18 144 kg (40,000 ib) with low cost
fuel is Candidate A. Although this configuration has the highest fuel consumption,

its direct operating costs are lowest because it does not entail the high development

and maintenance costs necessary to obtain a suitable tank insulation. However, as

fuel costs increase in the future, Candidate B provides an increasing cost advantage

and is therefore considered the preferred system concept in the long term.
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8. RECOMMENDATIONS

Based upon the various analyses conducted and the results obtained in this study,

it Is recommended that additional research and development efforts be undertaken

prior to establishing limits for the allowable freeze point and thermal stability of

commercial aviation kerosene. Specifically, these include:

• Experimental determinations of Jet fuel properties at and below its

freeze point with emphasis on heat of fusion, thermal conductivity, and

specific heat.

• Experimental investigation of wax deposition and its effects on heat

transfer Into the fuel immediately adjacent to the bottom of a fuel tank.

• Details of the freeze-out phenomenon and its influence on fuel hold-up,

determined by experimental investigation and analytical modeling.

4

• Develop a dynamic model for the fuel coklng rates, capable of correlating

the laboratory characterization of Jet fuel in a fuel system operated at

high temperature. This model must account for the chemical kinetics of

the reactions occurring in the liquid phase as well as the diffusion of

the primary reactants and products throughout the fuel itself.

• With the help of the dynamic model, develop a small scale test that will

correlate with the maximum temperature that a fuel can be subjected to in
a full scale engine fuel system before breakdown occurs. This test

should be capable of predicting the impact of time on the breakdown

temperature, i

• Development of a lightweight insulation which is compatible with Jet fuel

and which will adhere to fuel tank surfaces when subjected to a wide

range of environmental temperatures.

• Analyze requirements for airport facilities to refuel aircraft at ]

environmental temperatures below the fuel freeze point. The cost of .

operating and malntainlng these facilities as well as the equipment

required to transport the fuel from the refinery to its destination must

be included in evaluating the practicality of raising the fuel freeze b

point.

Implementation of these recommendations will provide industry with knowledge that can

provide a basis for making more accurate assessments of fuel property relaxstlon on

aircraft performance and lead to fuel system designs which are more practical and

possibly less expensive than those identified in this report.
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APPENDIX

> The effects of the increases in operating empty weight (OEW) and engine specific

fuel consumption (SFC) for the L-lOll-500 are shown as a series of sensitivity
curves, figures 62 through 67. These curves can be used to determine the increase in

takeoff gross weight (TOGW) and block fuel weight necessary to accommodate changes in
OEW and SFC.

The effects of increasing OEW were calculated with reference to the baseline OEW

of Iii 307 kg (245,390 ib) using the Lockheed Aircraft Mission Analysis Program. The

flight profiles for the increased OEW aircraft were flown using the same rules as the
baseline OEW aircraft and the profiles are similar to the zero OEW baseline profiles

except on the hot day 9260 kilometer (5000 n.ml.) mission where thrust limitations

force the profile to lower altitudes for the higher OEW increases. This change in
altitudes causes nonlinearity in the Ablock fuel and ATOGW lines for this case

(figure 64) whereas the lines for all of the other cases are linear. The change in
TOGW is greater than the change in block fuel weight for a given increase in OEW
because of the fuel necessary to carry the additional fuel and because of reserve
increases.

The effects of increases in engine SFC were also calculated using the Lockheed

Aircraft Mission Analysis Program. The same OEW of III 307 kg (245,390 ib) was used

for all of the missions and the flight profiles are all similar to the zero percent4
change in the SFC baseline profiles that they are referenced to. Increases in block

fuel and TOGW were calculated by increasing the SFC over the entire length of the
mission. Because Domestic Reserves and International Reserves Part II are based on

the OEW there are no increases for them for an increase in SFC. International

Reserves Part I changes a little however, because of additional fuel flow at the end
of the i_st cruise segment, i
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Figure 62 - Effect of OEW on block fuel and TOGW - cold day,
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