1,981 research outputs found

    Adiabatic Gravitational Perturbation During Reheating

    Get PDF
    We study the possibilities of parametric amplification of the gravitational perturbation during reheating in single-field inflation models. Our result shows that there is no additional growth of the super-horizon modes beyond the usual predictions.Comment: Refs added; New version to appear in PR

    Massless Metric Preheating

    Get PDF
    Can super-Hubble metric perturbations be amplified exponentially during preheating ? Yes. An analytical existence proof is provided by exploiting the conformal properties of massless inflationary models. The traditional conserved quantity \zeta is non-conserved in many regions of parameter space. We include backreaction through the homogeneous parts of the inflaton and preheating fields and discuss the role of initial conditions on the post-preheating power-spectrum. Maximum field variances are strongly underestimated if metric perturbations are ignored. We illustrate this in the case of strong self-interaction of the decay products. Without metric perturbations, preheating in this case is very inefficient. However, metric perturbations increase the maximum field variances and give alternative channels for the resonance to proceed. This implies that metric perturbations can have a large impact on calculations of relic abundances of particles produced during preheating.Comment: 8 pages, 4 colour figures. Version to appear in Phys. Rev. D. Contains substantial new analysis of the ranges of parameter space for which large changes to the inflation-produced power spectrum are expecte

    Testing for double inflation with WMAP

    Get PDF
    With the WMAP data we can now begin to test realistic models of inflation involving multiple scalar fields. These naturally lead to correlated adiabatic and isocurvature (entropy) perturbations with a running spectral index. We present the first full (9 parameter) likelihood analysis of double inflation with WMAP data and find that despite the extra freedom, supersymmetric hybrid potentials are strongly constrained with less than 7% correlated isocurvature component allowed when standard priors are imposed on the cosomological parameters. As a result we also find that Akaike & Bayesian model selection criteria rather strongly prefer single-field inflation, just as equivalent analysis prefers a cosmological constant over dynamical dark energy in the late universe. It appears that simplicity is the best guide to our universe.Comment: 7 pages, 6 figure

    Are Kaluza-Klein modes enhanced by parametric resonance?

    Get PDF
    We study parametric amplification of Kaluza-Klein (KK) modes in a higher DD-dimensional generalized Kaluza-Klein theory, which was originally considered by Mukohyama in the narrow resonance case. It was suggested that KK modes can be enhanced by an oscillation of a scale of compactification by the dd-dimensional sphere Sd (d=D4)S^d~(d=D-4) and by the direct product Sd1×Sd2 (d1+d2=D4)S^{d_1}\times S^{d_2}~(d_1+d_2=D-4). We extend this past work to the more general case where initial values of the scale of compactification and the quantum number of the angular momentum ll of KK modes are not small. We perform analytic approaches based on the Mathieu equation as well as numerical calculations, and find that the expansion of the universe rapidly makes the KK field deviate from instability bands. As a result, KK modes are not enhanced sufficiently in an expanding universe in these two classes of models.Comment: 15 pages, 5 figure

    Preheating of the nonminimally coupled inflaton field

    Get PDF
    We investigate preheating of an inflaton field ϕ\phi coupled nonminimally to a spacetime curvature. In the case of a self-coupling inflaton potential V(ϕ)=λϕ4/4V(\phi)=\lambda \phi^4/4, the dynamics of preheating changes by the effect of the negative ξ\xi. We find that the nonminimal coupling works in two ways. First, since the initial value of inflaton field for reheating becomes smaller with the increase of ξ|\xi|, the evolution of the inflaton quanta is delayed for fixed λ\lambda. Second, the oscillation of the inflaton field is modified and the nonadiabatic change around ϕ=0\phi=0 occurs significantly. That makes the resonant band of the fluctuation field wider. Especially for strong coupling regimes ξ1|\xi| \gg 1, the growth of the inflaton flutuation is dominated by the resonance due to the nonminimal coupling, which leads to the significant enhancement of low momentum modes. Although the final variance of the inflaton fluctuation does notchange significantly compared with the minimally coupled case, we have found that the energy transfer from the homogeneous inflaton to created particles efficiently occurs for ξ<60\xi<-60.Comment: 13pages, 11figure

    On Metric Preheating

    Get PDF
    We consider the generation of super-horizon metric fluctuations during an epoch of preheating in the presence of a scalar field \chi quadratically coupled to the inflaton. We find that the requirement of efficient broad resonance is concomitant with a severe damping of super-horizon \delta\chi quantum fluctuations during inflation. Employing perturbation theory with backreaction included as spatial averages to second order in the scalar fields and in the metric, we argue that the usual inflationary prediction for metric perturbations on scales relevant for structure formation is not strongly modified.Comment: 5 latex pages, 1 postscript figure included, uses revtex.sty in two column format and epsf.sty, some typos corrected and references added. Links and further material at http://astro.uchicago.edu/home/web/sigl/r4.htm

    Reheating in the Presence of Inhomogeneous Noise

    Get PDF
    Explosive particle production due to parametric resonance is a crucial feature of reheating in an inflationary cosmology. Coherent oscillations of the inflaton field lead to a periodically varying mass in the evolution equation of matter and gravitational fluctuations and often induce a parametric resonance instability. In a previous paper (hep-ph/9709273) it was shown that homogeneous (i.e. space independent) noise leads to an increase of the generalized Floquet exponent for all modes, at least if the noise is temporally uncorrelated. Here we extend the results to the physically more realistic case of spatially inhomogeneous noise. We demonstrate - modulo some mathematical fine points which are addressed in a companion paper - that the Floquet exponent is a non- decreasing function of the amplitude of the noise. We provide numerical evidence for an even stronger statement, namely that in the presence of inhomogeneous noise, the Floquet exponent of each mode is larger than the maximal Floquet exponent of the system in the absence of noise.Comment: 21 pages, 4 figure

    Reheating and turbulence

    Full text link
    We show that the ''turbulent'' particle spectra found in numerical simulations of the behavior of matter fields during reheating admit a simple interpretation in terms of hydrodynamic models of the reheating period. We predict a particle number spectrum nkkαn_{k}\propto k^{-\alpha} with α2\alpha \sim 2 for k0.k\to 0.Comment: 10 pages, one figure included in tex

    Post-Inflationary Reheating

    Get PDF
    We study a model for reheating that has been much investigated for parametric resonance, having a quartic interaction of the scalar inflaton with another scalar field. Attention is particularly on the quantum excitations of the inflaton field and the metric perturbation with a smooth transition from quantum to classical stochastic states, followed through from a specific inflation model to a state including a relativistic fluid. The scalar fields enter non-perturbatively but the metric enters perturbatively, and the validity of this latter is assessed. In this model our work seems to point the large scale curvature parameter changing.Comment: 25 pages, 6 figures. Coding error(misprint) corrected:figures and some conclusions change

    Shrinking II -- The Distortion of the Area Distance-Redshift Relation in Inhomogeneous Isotropic Universes

    Get PDF
    This paper and the others in the series challenge the standard model of the effects of gravitational lensing on observations at large distances. We show that due to the cumulative effect of lensing, areas corresponding to an observed solid angle can be quite different than would be estimated from the corresponding Friedmann-Lema\^{\i}tre model, even when averaged over large angular scales. This paper concentrates on the specific example of spherically symmetric but spatially inhomogeneous dust universes, the Lema\^{\i}tre-Tolman-Bondi models, and shows that radial lensing significantly distorts the area distance-redshift and density-redshift relations in these exact solutions compared with the standard ones for Friedmann-Lema\^{\i}tre models. Thus inhomogeneity may introduce significant errors into distance estimates based on the standard FL relations, even after all-sky averaging. In addition a useful new gauge choice is presented for these models, solving the problem of locating the past null cone exactly.Comment: Minor technical refinement, 16 pages, RevTex, 8 eps figure
    corecore