36,290 research outputs found

    Emissions data by category of engines

    Get PDF
    Exhaust gas pollutant emissions data under test stand conditions were obtained for the following: (1) full-rich baseline test (7-mode cycle), (2) lean-out tests for each power mode, and (3) different spark settings. The test data were also used to create a theoretical 5-mode cycle baseline. The emissions data in the framework of the theoretical 5-mode cycle were emphasized. There is no significant difference in the test results produced by data exhibited on the 7-mode cycle or 5-mode cycle. The 5-mode cycle was slightly more conservative for the carbon monoxide pollutant than the 7-mode cycle. The data were evaluated to determine which mode(s) had the greatest influence on improving general aviation piston engine emissions. Improvements that were achieved as a result of making lean-out adjustments to the fuel metering device were: (1) taxi mode only, (2) taxi and approach modes combined, and (3) leaning-out of the climb mode to best power

    Robot computer problem solving system

    Get PDF
    The conceptual, experimental, and practical phases of developing a robot computer problem solving system are outlined. Robot intelligence, conversion of the programming language SAIL to run under the THNEX monitor, and the use of the network to run several cooperating jobs at different sites are discussed

    Comparison of the INRIM and PTB lattice-spacing standards

    Full text link
    To base the kilogram definition on the atomic mass of the silicon 28 atom, the present relative uncertainty of the silicon 28 lattice parameter must lowered to 3E-9. To achieve this goal, a new experimental apparatus capable of a centimetre measurement-baseline has been made at the INRIM. The comparison between the determinations of the lattice parameter of crystals MO*4 of INRIM and WASO4.2a of PTB is intended to verify the measurement capabilities and to assess the limits of this experiment.Comment: 10 pages, 8 figures, submitted to Metrologi

    A multiwavlength study of PSR B0628-28: The first overluminous rotation-powered pulsar?

    Full text link
    The ROSAT source RX J0630.8-2834 was suggested by positional coincidence to be the X-ray counterpart of the old field pulsar PSR B0628-28. This association, however, was regarded to be unlikely based on the computed energetics of the putative X-ray counterpart. In this paper we report on multiwavelength observations of PSR B0628-28 made with the ESO/NTT observatory in La Silla, the Jodrell Bank radio observatory and XMM-Newton. Although the optical observations do not detect any counterpart of RX J0630.8-2834 down to a limiting magnitude of V=26.1 mag and B=26.3 mag, XMM-Newton observations finally confirmed it to be the pulsar's X-ray counterpart by detecting X-ray pulses with the radio pulsar's spin-period. The X-ray pulse profile is characterized by a single broad peak with a second smaller peak leading the main pulse component by ~144 degree. The fraction of pulsed photons is (38 +- 7)% with no strong energy dependence in the XMM-Newton bandpass. The pulsar's X-ray spectrum is well described by a single component power law with photon index 2.63^{+0.23}_{-0.15}, indicating that the pulsar's X radiation is dominated by non-thermal emission processes. A low level contribution of thermal emission from residual cooling or from heated polar caps, cannot be excluded. The pulsar's spin-down to X-ray energy conversion efficiency is obtained to be ~16% for the radio dispersion measure inferred pulsar distance. If confirmed, PSR B0628-28 would be the first X-ray overluminous rotation-powered pulsar identified among all ~1400 radio pulsars known today.Comment: Accepted for publication in ApJ. Find a paper copy with higher resolution images at ftp://ftp.xray.mpe.mpg.de/people/web/astro-ph-0505488_rev2.pd

    Variational analysis of self-focusing of intense ultrashort pulses in gases

    Full text link
    By using perturbation theory we derive an expression for the electrical field of a Gaussian laser pulse propagating in a gas medium. This expression is used as a trial solution in a variational method to get quasianalytical solutions for the width, intensity and self-focusing distance of ultrashort pulse. The approximation gives an improved agreement with results of numerical simulations for a broad range of values of the input power of the pulse than previous analytical results available in the literature.Comment: 19 pages, 8 figure

    Analytical ground state for the three-band Hubbard model

    Full text link
    For the calculation of charge excitations as those observed in, e.g., photo-emission spectroscopy or in electron-energy loss spectroscopy, a correct description of ground-state charge properties is essential. In strongly correlated systems like the undoped cuprates this is a highly non-trivial problem. In this paper we derive a non-perturbative analytical approximation for the ground state of the three-band Hubbard model on an infinite, half filled CuO_2 plane. By comparison with Projector Quantum Monte Carlo calculations it is shown that the resulting expressions correctly describe the charge properties of the ground state. Relations to other approaches are discussed. The analytical ground state preserves size consistency and can be generalized for other geometries, while still being both easy to interpret and to evaluate.Comment: REVTeX, 8 pages, 6 figures, to appear in Phys. Rev.

    Interference effects in above-threshold ionization from diatomic molecules: determining the internuclear separation

    Full text link
    We calculate angle-resolved above-threshold ionization spectra for diatomic molecules in linearly polarized laser fields, employing the strong-field approximation. The interference structure resulting from the individual contributions of the different scattering scenarios is discussed in detail, with respect to the dependence on the internuclear distance and molecular orientation. We show that, in general, the contributions from the processes in which the electron is freed at one center and rescatters off the other obscure the interference maxima and minima obtained from single-center processes. However, around the boundary of the energy regions for which rescattering has a classical counterpart, such processes play a negligible role and very clear interference patterns are observed. In such energy regions, one is able to infer the internuclear distance from the energy difference between adjacent interference minima.Comment: 10 pages, 8 figures; discussions slightly modified and an additional figure inserted for clarit

    Role of interactions in ferrofluid thermal ratchets

    Full text link
    Orientational fluctuations of colloidal particles with magnetic moments may be rectified with the help of external magnetic fields with suitably chosen time dependence. As a result a noise-driven rotation of particles occurs giving rise to a macroscopic torque per volume of the carrier liquid. We investigate the influence of mutual interactions between the particles on this ratchet effect by studying a model system with mean-field interactions. The stochastic dynamics may be described by a nonlinear Fokker-Planck equation for the collective orientation of the particles which we solve approximately by using the effective field method. We determine an interval for the ratio between coupling strength and noise intensity for which a self-sustained rectification of fluctuations becomes possible. The ratchet effect then operates under conditions for which it were impossible in the absence of interactions.Comment: 18 pages, 10 figure

    Detection of Pulsed X-ray Emission from XMM-Newton Observations of PSR J0538+2817

    Full text link
    We report on the XMM-Newton observations of the 143 ms pulsar PSR J0538+2817. We present evidence for the first detections of pulsed X-rays from the source at a frequency which is consistent with the predicted radio frequency. The pulse profile is broad and asymmetric, with a pulse fraction of 18 +/- 3%. We find that the spectrum of the source is well-fit with a blackbody with T^{infty} = (2.12^{+0.04}_{-0.03}) x 10^6 K and N_{H} = 2.5 x 10^21 cm^{-2}. The radius determined from the model fit of 1.68 +/- 0.05 km suggests that the emission is from a heated polar cap. A fit to the spectrum with an atmospheric model reduces the inferred temperature and hence increases the radius of the emitting region, however the pulsar distance determined from the fit is then smaller than the dispersion distance.Comment: 24 pages, 6 figures, 3 tables, accepted for publication in ApJ. Error in radius calculation corrected, discussion and conclusions remain unchange
    corecore