37,520 research outputs found
Power of unentangled measurements on two antiparallel spins
We consider a pair of antiparallel spins polarized in a random direction to
encode quantum information. We wish to extract as much information as possible
on the polarization direction attainable by an unentangled measurement, i.e.,
by a measurement, whose outcomes are associated with product states. We develop
analytically the upper bound 0.7935 bits to the Shannon mutual information
obtainable by an unentangled measurement, which is definitely less than the
value 0.8664 bits attained by an entangled measurement. This proves our main
result, that not every ensemble of product states can be optimally
distinguished by an unentangled measurement, if the measure of
distinguishability is defined in the sense of Shannon. We also present results
from numerical calculations and discuss briefly the case of parallel spins.Comment: Latex file, 18 pages, 1 figure; published versio
The Fulling-Davies-Unruh Effect is Mandatory: The Proton's Testimony
We discuss the decay of accelerated protons and illustrate how the
Fulling-Davies-Unruh effect is indeed mandatory to maintain the consistency of
standard Quantum Field Theory. The confidence level of the Fulling-Davies-Unruh
effect must be the same as that of Quantum Field Theory itself.Comment: Awarded "honorable mention" by Gravity Research Foundation in the
2002 Essay competitio
Are There Magnetars in High Mass X-ray Binaries? The Case of SuperGiant Fast X-Ray Transients
In this paper we survey the theory of wind accretion in high mass X-ray
binaries hosting a magnetic neutron star and a supergiant companion.
We concentrate on the different types of interaction between the inflowing
wind matter and the neutron star magnetosphere that are relevant when accretion
of matter onto the neutron star surface is largely inhibited; these include the
inhibition through the centrifugal and magnetic barriers. Expanding on earlier
work, we calculate the expected luminosity for each regime and derive the
conditions under which transition from one regime to another can take place. We
show that very large luminosity swings (~10^4 or more on time scales as short
as hours) can result from transitions across different regimes.
The activity displayed by supergiant fast X-ray transients, a recently
discovered class of high mass X-ray binaries in our galaxy, has often been
interpreted in terms of direct accretion onto a neutron star immersed in an
extremely clumpy stellar wind. We show here that the transitions across the
magnetic and/or centrifugal barriers can explain the variability properties of
these sources as a results of relatively modest variations in the stellar wind
velocity and/or density. According to this interpretation we expect that
supergiant fast X-ray transients which display very large luminosity swings and
host a slowly spinning neutron star are characterized by magnetar-like fields,
irrespective of whether the magnetic or the centrifugal barrier applies.
Supergiant fast X-ray transients might thus provide a new opportunity to
detect and study magnetars in binary systems.Comment: Accepted for publication in ApJ. 16 pages, 6 figure
Convex probability domain of generalized quantum measurements
Generalized quantum measurements with N distinct outcomes are used for
determining the density matrix, of order d, of an ensemble of quantum systems.
The resulting probabilities are represented by a point in an N-dimensional
space. It is shown that this point lies in a convex domain having at most d^2-1
dimensions.Comment: 7 pages LaTeX, one PostScript figure on separate pag
Optimal distinction between non-orthogonal quantum states
Given a finite set of linearly independent quantum states, an observer who
examines a single quantum system may sometimes identify its state with
certainty. However, unless these quantum states are orthogonal, there is a
finite probability of failure. A complete solution is given to the problem of
optimal distinction of three states, having arbitrary prior probabilities and
arbitrary detection values. A generalization to more than three states is
outlined.Comment: 9 pages LaTeX, one PostScript figure on separate pag
Image processing applied to gravity and topography data covering the continental United States
The applicability of fairly standard image processing techniques to processing and analyzing large geologic data sets in addressed. Image filtering techniques were used to interpolate between gravity station locations to produce a regularly spaced data array that preserves detail in areas with good coverage, and that produces a continuous tone image rather than a contour map. Standard image processing techniques were used to digitally register and overlay topographic and gravity data, and the data were displayed in ways that emphasize subtle but pervasive structural features. The potential of the methods is illustrated through a discussion of linear structures that appear in the processed data between the midcontinent gravity high and the Appalachians
Ergodic property of Markovian semigroups on standard forms of von Neumann algebras
We give sufficient conditions for ergodicity of the Markovian semigroups
associated to Dirichlet forms on standard forms of von Neumann algebras
constructed by the method proposed in Refs. [Par1,Par2]. We apply our result to
show that the diffusion type Markovian semigroups for quantum spin systems are
ergodic in the region of high temperatures where the uniqueness of the
KMS-state holds.Comment: 25 page
The Index Theorem and Universality Properties of the Low-lying Eigenvalues of Improved Staggered Quarks
We study various improved staggered quark Dirac operators on quenched gluon
backgrounds in lattice QCD generated using a Symanzik-improved gluon action. We
find a clear separation of the spectrum into would-be zero modes and others.
The number of would-be zero modes depends on the topological charge as expected
from the Index Theorem, and their chirality expectation value is large
(approximately 0.7). The remaining modes have low chirality and show clear
signs of clustering into quartets and approaching the random matrix theory
predictions for all topological charge sectors. We conclude that improvement of
the fermionic and gauge actions moves the staggered quarks closer to the
continuum limit where they respond correctly to QCD topology.Comment: 4 pages, 3 figure
Tuning gastropod locomotion: Modeling the influence of mucus rheology on the cost of crawling
Common gastropods such as snails crawl on a solid substrate by propagating
muscular waves of shear stress on a viscoelastic mucus. Producing the mucus
accounts for the largest component in the gastropod's energy budget, more than
twenty times the amount of mechanical work used in crawling. Using a simple
mechanical model, we show that the shear-thinning properties of the mucus favor
a decrease in the amount of mucus necessary for crawling, thereby decreasing
the overall energetic cost of locomotion.Comment: Corrected typo
A Stronger Subadditivity of Entropy
The strong subadditivity of entropy plays a key role in several areas of
physics and mathematics. It states that the entropy S[\rho]= - Tr (\rho \ln
\rho) of a density matrix \rho_{123} on the product of three Hilbert spaces
satisfies S[\rho_{123}] - S[\rho_{23}] \leq S[\rho_{12}]- S[\rho_2]. We
strengthen this to S[\rho_{123}] - S[\rho_{12}] \leq \sum_\alpha n^\alpha
(S[\rho_{23}^\alpha ] - S[\rho_2^\alpha ]), where the n^\alpha are weights and
the \rho_{23}^\alpha are partitions of \rho_{23}. Correspondingly, there is a
strengthening of the theorem that the map A -> Tr \exp[L + \ln A] is concave.
As applications we prove some monotonicity and convexity properties of the
Wehrl entropy and entropy inequalities for quantum gases.Comment: LaTeX2e, 24 page
- …