229 research outputs found

    Light-Induced Reactions of Chlorpromazine in the Presence of a Heterogeneous Photocatalyst

    Get PDF
    A commercial carbon-modified titanium dioxide, KRONOClean 7000, was applied as a UV(A) and visible-light active photocatalyst to investigate the conversion of the antipsychotic pharmaceutical chlorpromazine in aqueous phase employing two monochromatic light sources emitting at wavelengths of 365 and 455 nm. Photocatalytic and photolytic conversion of chlorpromazine under both anaerobic and aerobic conditions was analyzed using a HPLC-MS technique. Depending on the irradiation wavelength and presence of oxygen, varying conversion rates and intermediates revealing different reaction pathways were observed. Upon visible light irradiation under aerobic conditions, chlorpromazine was only converted in the presence of the photocatalyst. No photocatalytic conversion of this compound under anaerobic conditions upon visible light irradiation was observed. Upon UV(A) irradiation, chlorpromazine was successfully converted into its metabolites in both presence and absence of the photocatalyst. Most importantly, chlorpromazine sulfoxide, a very persistent metabolite of chlorpromazine, was produced throughout the photolytic and photocatalytic conversions of chlorpromazine under aerobic conditions. Chlorpromazine sulfoxide was found to be highly stable under visible light irradiation even in the presence of the photocatalyst. Heterogeneous photocatalysis under UV(A) irradiation resulted in a slow decrease of the sulfoxide concentration, however, the required irradiation time for its complete removal was found to be much longer compared to the removal of chlorpromazine at the same initial concentration

    Testing, Verification and Improvements of Timeliness in ROS Processes

    Get PDF
    This paper addresses the problem improving response times of robots implemented in the Robotic Operating System (ROS) using formal verification of computational-time feasibility. In order to verify the real time behaviour of a robot under uncertain signal processing times, methods of formal verification of timeliness properties are proposed for data flows in a ROS-based control system using Probabilistic Timed Programs (PTPs). To calculate the probability of success under certain time limits, and to demonstrate the strength of our approach, a case study is implemented for a robotic agent in terms of operational times verification using the PRISM model checker, which points to possible enhancements to the operation of the robotic agent

    Symmetry of Magnetically Ordered Quasicrystals

    Get PDF
    The notion of magnetic symmetry is reexamined in light of the recent observation of long range magnetic order in icosahedral quasicrystals [Charrier et al., Phys. Rev. Lett. 78, 4637 (1997)]. The relation between the symmetry of a magnetically-ordered (periodic or quasiperiodic) crystal, given in terms of a ``spin space group,'' and its neutron diffraction diagram is established. In doing so, an outline of a symmetry classification scheme for magnetically ordered quasiperiodic crystals is provided. Predictions are given for the expected diffraction patterns of magnetically ordered icosahedral crystals, provided their symmetry is well described by icosahedral spin space groups.Comment: 5 pages. Accepted for publication in Phys. Rev. Letter

    Critical dimensions for random walks on random-walk chains

    Full text link
    The probability distribution of random walks on linear structures generated by random walks in dd-dimensional space, Pd(r,t)P_d(r,t), is analytically studied for the case ξr/t1/41\xi\equiv r/t^{1/4}\ll1. It is shown to obey the scaling form Pd(r,t)=ρ(r)t1/2ξ2fd(ξ)P_d(r,t)=\rho(r) t^{-1/2} \xi^{-2} f_d(\xi), where ρ(r)r2d\rho(r)\sim r^{2-d} is the density of the chain. Expanding fd(ξ)f_d(\xi) in powers of ξ\xi, we find that there exists an infinite hierarchy of critical dimensions, dc=2,6,10,d_c=2,6,10,\ldots, each one characterized by a logarithmic correction in fd(ξ)f_d(\xi). Namely, for d=2d=2, f2(ξ)a2ξ2lnξ+b2ξ2f_2(\xi)\simeq a_2\xi^2\ln\xi+b_2\xi^2; for 3d53\le d\le 5, fd(ξ)adξ2+bdξdf_d(\xi)\simeq a_d\xi^2+b_d\xi^d; for d=6d=6, f6(ξ)a6ξ2+b6ξ6lnξf_6(\xi)\simeq a_6\xi^2+b_6\xi^6\ln\xi; for 7d97\le d\le 9, fd(ξ)adξ2+bdξ6+cdξdf_d(\xi)\simeq a_d\xi^2+b_d\xi^6+c_d\xi^d; for d=10d=10, f10(ξ)a10ξ2+b10ξ6+c10ξ10lnξf_{10}(\xi)\simeq a_{10}\xi^2+b_{10}\xi^6+c_{10}\xi^{10}\ln\xi, {\it etc.\/} In particular, for d=2d=2, this implies that the temporal dependence of the probability density of being close to the origin Q2(r,t)P2(r,t)/ρ(r)t1/2lntQ_2(r,t)\equiv P_2(r,t)/\rho(r)\simeq t^{-1/2}\ln t.Comment: LATeX, 10 pages, no figures submitted for publication in PR

    Order statistics of the trapping problem

    Full text link
    When a large number N of independent diffusing particles are placed upon a site of a d-dimensional Euclidean lattice randomly occupied by a concentration c of traps, what is the m-th moment of the time t_{j,N} elapsed until the first j are trapped? An exact answer is given in terms of the probability Phi_M(t) that no particle of an initial set of M=N, N-1,..., N-j particles is trapped by time t. The Rosenstock approximation is used to evaluate Phi_M(t), and it is found that for a large range of trap concentracions the m-th moment of t_{j,N} goes as x^{-m} and its variance as x^{-2}, x being ln^{2/d} (1-c) ln N. A rigorous asymptotic expression (dominant and two corrective terms) is given for for the one-dimensional lattice.Comment: 11 pages, 7 figures, to be published in Phys. Rev.

    SBMLsqueezer: A CellDesigner plug-in to generate kinetic rate equations for biochemical networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of complex biochemical models has been facilitated through the standardization of machine-readable representations like SBML (Systems Biology Markup Language). This effort is accompanied by the ongoing development of the human-readable diagrammatic representation SBGN (Systems Biology Graphical Notation). The graphical SBML editor CellDesigner allows direct translation of SBGN into SBML, and vice versa. For the assignment of kinetic rate laws, however, this process is not straightforward, as it often requires manual assembly and specific knowledge of kinetic equations.</p> <p>Results</p> <p>SBMLsqueezer facilitates exactly this modeling step via automated equation generation, overcoming the highly error-prone and cumbersome process of manually assigning kinetic equations. For each reaction the kinetic equation is derived from the stoichiometry, the participating species (e.g., proteins, mRNA or simple molecules) as well as the regulatory relations (activation, inhibition or other modulations) of the SBGN diagram. Such information allows distinctions between, for example, translation, phosphorylation or state transitions. The types of kinetics considered are numerous, for instance generalized mass-action, Hill, convenience and several Michaelis-Menten-based kinetics, each including activation and inhibition. These kinetics allow SBMLsqueezer to cover metabolic, gene regulatory, signal transduction and mixed networks. Whenever multiple kinetics are applicable to one reaction, parameter settings allow for user-defined specifications. After invoking SBMLsqueezer, the kinetic formulas are generated and assigned to the model, which can then be simulated in CellDesigner or with external ODE solvers. Furthermore, the equations can be exported to SBML, LaTeX or plain text format.</p> <p>Conclusion</p> <p>SBMLsqueezer considers the annotation of all participating reactants, products and regulators when generating rate laws for reactions. Thus, for each reaction, only applicable kinetic formulas are considered. This modeling scheme creates kinetics in accordance with the diagrammatic representation. In contrast most previously published tools have relied on the stoichiometry and generic modulators of a reaction, thus ignoring and potentially conflicting with the information expressed through the process diagram. Additional material and the source code can be found at the project homepage (URL found in the Availability and requirements section).</p

    Evaluation of rate law approximations in bottom-up kinetic models of metabolism.

    Get PDF
    BackgroundThe mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question.ResultsIn this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more suitable for rate law approximations.ConclusionsOverall, our work generally supports the use of approximate rate laws when building large scale kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction accuracy when data is available. The work here should help to provide guidance to future kinetic modeling efforts on the choice of rate law and parameterization approaches

    On the joint residence time of N independent two-dimensional Brownian motions

    Full text link
    We study the behavior of several joint residence times of N independent Brownian particles in a disc of radius RR in two dimensions. We consider: (i) the time T_N(t) spent by all N particles simultaneously in the disc within the time interval [0,t]; (ii) the time T_N^{(m)}(t) which at least m out of N particles spend together in the disc within the time interval [0,t]; and (iii) the time {\tilde T}_N^{(m)}(t) which exactly m out of N particles spend together in the disc within the time interval [0,t]. We obtain very simple exact expressions for the expectations of these three residence times in the limit t\to\infty.Comment: 8 page

    Fourier-Space Crystallography as Group Cohomology

    Full text link
    We reformulate Fourier-space crystallography in the language of cohomology of groups. Once the problem is understood as a classification of linear functions on the lattice, restricted by a particular group relation, and identified by gauge transformation, the cohomological description becomes natural. We review Fourier-space crystallography and group cohomology, quote the fact that cohomology is dual to homology, and exhibit several results, previously established for special cases or by intricate calculation, that fall immediately out of the formalism. In particular, we prove that {\it two phase functions are gauge equivalent if and only if they agree on all their gauge-invariant integral linear combinations} and show how to find all these linear combinations systematically.Comment: plain tex, 14 pages (replaced 5/8/01 to include archive preprint number for reference 22
    corecore