173 research outputs found

    Low-temperature synthesis of SmFeAsO0.7F0.3 wires with high transport critical current density

    Full text link
    Ag-sheathed SmFeAsO0.7F0.3 (Sm-1111) superconducting wires were prepared by a one-step solid state reaction at temperatures as low as 850~900C, instead of commonly used temperatures of 1150~1250C. The X-ray diffraction pattern of the as-sintered samples is well indexed on the basis of tetragonal ZrCuSiAs-type structure. We characterized transport critical current density Jc of the SmFeAsO0.7F0.3 wires in increasing and subsequently decreasing fields, by a resistive four-probe method. A transport Jc as high as ~1300 A/cm^2 at 4.2 K and self field has been observed for the first time in Sm-1111 type polycrystalline superconductors. The Jc also shows a rapid depression in small applied fields as well as a magnetic-history dependence, indicating weak-linked grain boundaries. The low-temperature synthesis method can be very beneficial to fabricating the RE-1111 iron oxynictides in a convenient and safe way.Comment: 12 pages, 3 figure

    Evidence for topological semimetallicity in a chain-compound TaSe3

    Get PDF
    Among one-dimensional transition-metal trichalcogenides, TaSe3 is unconventional in many respects. One is its strong topological semimetallicity as predicted by first-principles calculations. We report the experimental investigations of the electronic properties of one-dimensional-like TaSe3 single crystals. While the b-axis electrical resistivity shows good metallicity with a high residual resistivity ratio greater than 100, an extremely large magnetoresistance is observed reaching ≈7 × 103% at 1.9 K for 14 T. Interestingly, the magnetoresistance follows the Kohler’s rule with nearly quadratic magnetic field dependence, consistent with the electron–hole compensation scenario as confirmed by our Hall conductivity data. Both the longitudinal and Hall conductivities show Shubnikov-de Haas oscillations with two frequencies: Fα ≈ 97 T and Fβ ≈ 186 T. Quantitative analysis indicates that Fα results from the two-dimensional-like electron band with the non-trivial Berry phase [1.1π], and Fβ from the hole band with the trivial Berry phase [0(3D) − 0.16π(2D)]. Our experimental findings are consistent with the predictions based on first-principles calculations

    Hollow carbon spheres as an efficient dopant for enhancing critical current density of MgB2 based tapes

    Full text link
    A significant enhancement of Jc and Hirr in MgB2 tapes has been achieved by the in situ powder-in-tube method utilizing hollow carbon spheres (HCS) as dopants. At 4.2 K, the transport Jc for the 850C sintered samples reached 3.1x10^4, and 1.4x10^4 A/cm^2 at 10 and 12 T, respectively, and were better than those of optimal nano-SiC doped tapes. Furthermore, the Hirr for doped sample was raised up to 16.8 T at 10 K due to the carbon substitution effect. The results demonstrate that HCS is one of the most promising dopants besides nano-carbon and SiC for the enhancement of current capacity for MgB2 in high fields.Comment: 14 pages, 5 figure

    Superconductivity induced by doping Rh in CaFe2-xRhxAs2

    Full text link
    In this paper we report the synthesis of iron-based superconductors CaFe2-xRhxAs2 using one-step solid state reaction method, which crystallizes in the ThCr2Si2-type structure with a space group I4/mmm. The systematic evolution of the lattice constants demonstrates that the Fe ions are successfully replaced by the Rh. By increasing the doping content of Rh, the spin-density-wave (SDW) transition in the parent compound is suppressed and superconductivity emerges. The maximum superconducting transition temperature is found at 18.5 K with the doping level of x = 0.15. The temperature dependence of DC magnetization confirms superconducting transitions at around 15 K. The general phase diagram was obtained and found to be similar to the case of Rh-doping Sr122 system. Our results explicitly demonstrate the feasibility of inducing superconductivity in Ca122 compounds by higher d-orbital electrons doping, however, different Rh-doping effect between FeAs122 compounds and FeAs1111 systems still remains an open question.Comment: 15 pages, 6 figure

    Redox flow desalination based on the temperature difference as a driving force

    Get PDF
    How to effectively reduce the consumption of electrical energy is a key topic in many studies of electrochemical desalination. In this work, we use the temperature difference to drive a continuous process of dialysis desalination. The system consists of a thermoelectric unit and a desalination unit connected in series. The thermoelectric unit includes a thermoelectric generator (TEG), a heater as heat source and an air-cooled heat sink to generate electricity and for the desalination unit. The desalination unit contains two platinum-coated hydrophobic carbon cloths as current collectors, a mixture of [Fe(CN)6]3-/4- as anolyte and catholyte, concentrated and diluted salt streams with two cationic and one anionic exchange membranes separated configuration (CEM|AEM|CEM). During the charging process driven by temperature difference, chloride and sodium ions in the diluted salt stream move to the concentrated salt stream and cathodic reservoir, respectively. The results show that the concentration of brine drops significantly from 5,000 ppm to 344.3 ppm as the current decreases to 0.06 mA from the initial 1.30 mA when the temperature difference is maintained at 65 K. Concurrently, the average salt removal rate is up to 8.8 μg cm-2 min-1 and average heat consumption is 284.3 MJ mole-1. Moreover, the influences from the temperature difference, salt feeds content and electrolyte concentration are also investigated in detail. This research has the potential application for the freshwater obtainment via the utilization of waste heat, and will be significant in places with the shortage of the electrical energy such as ships, islands and oceans with the temperature differences

    Superconductivity in Co-doped SmFeAsO

    Full text link
    Here we report the synthesis and basic characterization of SmFe1-xCoxAsO (x=0.10, 0.15). The parent compound SmFeAsO itself is not superconducting but shows an antiferromagnetic order near 150 K, which must be suppressed by doping before superconductivity emerges. With Co-doping in the FeAs planes, antiferromagnetic order is destroyed and superconductivity occurs at 15 K. Similar to LaFe1-xCoxAsO, the SmFe1-xCoxAsO system appears to tolerate considerable disorder in the FeAs planes. This result is important, which indicates difference between cuprare superconductors and the iron-based arsenide ones.Comment: 11 pages, 3 figure

    Structural and critical current properties in polycrystalline SmO1-xFxFeAs

    Full text link
    A series of polycrystalline SmO1-xFxFeAs bulks (x=0.15, 0.2, 0.3 and 0.4) were prepared by the conventional solid state reaction. Resistivity, susceptibility, magnetic hysteresis, critical current density and microstructure of these samples have been investigated. It is found that critical transition temperature Tc increases steadily with increasing fluorine content, with the highest onset Tc=53 K at x=0.4. On the other hand, the superconductivity seems correlated with lattice constants; that is, Tc rises with the shrinkage of a-axis while resistivity increases with the enlargement of c-axis. A global critical current density of 1.1x10^4 A/cm^2 at 5 K in self field was achieved in the purest sample. A method of characterization of inter-grain current density is proposed. This method gives an inter-grain Jc of 3.6x10^3 A/cm^2 at 5 K in self field, in contrast to the intra-grain Jc of 10^6 A/cm^2. The effect of composition gradients on the inter-grain Jc in SmO1-xFxFeAs is also discussed.Comment: 18 pages, 7 figure

    Variants in the ITPA Gene Protect Against Ribavirin-Induced Hemolytic Anemia and Decrease the Need for Ribavirin Dose Reduction

    Get PDF
    In a genome-wide association study of patients being treated for chronic hepatitis C, 2 functional variants in ITPA that cause inosine triphosphatase (ITPase) deficiency were shown to protect against ribavirin (RBV)-induced hemolytic anemia during early stages of treatment. We aimed to replicate this finding in an independent cohort from the Study of Viral Resistance to Antiviral Therapy of Chronic Hepatitis C and to investigate the effects of these variants beyond week 4
    • …
    corecore